12. ReentrantLock 实现原理
- ReentrantLock 支持两种获取锁的方式,一种是公平模型,一种是非公平模型
- 使用 synchronize 来做同步处理时,锁的获取和释放都是隐式的,实现的原理是通过编译后加上不同的机器指令来实现。
- 而 ReentrantLock 就是一个普通的类,它是基于 AQS(AbstractQueuedSynchronizer) 来实现的。是一个重入锁:一个线程获得了锁之后仍然可以反复的加锁,不会出现自己阻塞自己的情况。
什么是 AQS
- AQS 即是 AbstractQueuedSynchronizer,一个用来构建锁和同步工具的框架,包括常用的 ReentrantLock、CountDownLatch、Semaphore 等。
- AQS 没有锁之类的概念,它有个 state 变量,是个 int 类型,在不同场合有着不同含义。本文研究的是锁,为了好理解,姑且先把 state 当成锁。
- AQS 围绕 state 提供两种基本操作“获取”和“释放”,有条双向队列存放阻塞的等待线程,并提供一系列判断和处理方法,
简单说几点: state 是独占的,还是共享的;
state 被获取后,其他线程需要等待;
state 被释放后,唤醒等待线程;
线程等不及时,如何退出等待。
锁类型
//默认非公平锁
public ReentrantLock() {
sync = new NonfairSync();
}
//公平锁
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
- 默认一般使用非公平锁,它的效率和吞吐量都比公平锁高的多
- ReentrantLock 的内部类 Sync 继承了 AQS,分为公平锁 FairSync 和非公平锁 NonfairSync。
- 公平锁:线程获取锁的顺序和调用 lock 的顺序一样,FIFO;
- 非公平锁:线程获取锁的顺序和调用 lock 的顺序无关,全凭运气。
获取锁
//默认非公平锁,
private ReentrantLock lock = new ReentrantLock();
// private ReentrantLock lock = new ReentrantLock(true); 公平锁
public void run() {
lock.lock();
try {
//do bussiness
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
公平锁获取锁
首先看下获取锁的过程:
public void lock() {
sync.lock();
}
可以看到是使用 sync
的方法,而这个方法是一个抽象方法,具体是由其子类( FairSync
) 来实现的,以下是公平锁的实现:
final void lock() {
acquire(1);
}
//AbstractQueuedSynchronizer 中的 acquire()
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
第一步是尝试获取锁( tryAcquire(arg)
),这个也是由其子类实现:
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
首先会判断 AQS
中的 state
是否等于 0,0 表示目前没有其他线程获得锁,当前线程就可以尝试获取锁。
注意 :尝试之前会利用 hasQueuedPredecessors()
方法来判断 AQS 的队列中中是否有其他线程,如果有则不会尝试获取锁( 这是公平锁特有的情况 )。
如果队列中没有线程就利用 CAS 来将 AQS 中的 state 修改为 1,也就是获取锁,获取成功则将当前线程置为获得锁的独占线程( setExclusiveOwnerThread(current)
)。
如果 state
大于 0 时,说明锁已经被获取了,则需要判断获取锁的线程是否为当前线程( ReentrantLock
支持重入),是则需要将 state + 1
,并将值更新。
写入队列
如果 tryAcquire(arg)
获取锁失败,则需要用 addWaiter(Node.EXCLUSIVE)
将当前线程写入队列中。
写入之前需要将当前线程包装为一个 Node
对象( addWaiter(Node.EXCLUSIVE)
)。
AQS 中的队列是由 Node 节点组成的双向链表实现的。
包装代码:
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
首先判断队列是否为空,不为空时则将封装好的 Node
利用 CAS
写入队尾,如果出现并发写入失败就需要调用 enq(node);
来写入了。
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
这个处理逻辑就相当于 自旋
加上 CAS
保证一定能写入队列。
挂起等待线程
写入队列之后需要将当前线程挂起(利用 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
):
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
首先会根据 node.predecessor()
获取到上一个节点是否为头节点,如果是则尝试获取一次锁,获取成功就万事大吉了。
如果不是头节点,或者获取锁失败,则会根据上一个节点的 waitStatus
状态来处理( shouldParkAfterFailedAcquire(p, node)
)。
waitStatus
用于记录当前节点的状态,如节点取消、节点等待等。
shouldParkAfterFailedAcquire(p, node)
返回当前线程是否需要挂起,如果需要则调用 parkAndCheckInterrupt()
:
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
他是利用 LockSupport
的 part
方法来挂起当前线程的,直到被唤醒。
非公平锁获取锁
公平锁与非公平锁的差异主要在获取锁:
公平锁就相当于买票,后来的人需要排到队尾依次买票, 不能插队 。
而非公平锁则没有这些规则,是 抢占模式 ,每来一个人不会去管队列如何,直接尝试获取锁。
非公平锁:
final void lock() {
//直接尝试获取锁
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
公平锁:
final void lock() {
acquire(1);
}
还要一个重要的区别是在尝试获取锁时 tryAcquire(arg)
,非公平锁是不需要判断队列中是否还有其他线程,也是直接尝试获取锁:
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
//没有 !hasQueuedPredecessors() 判断
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
释放锁
公平锁和非公平锁的释放流程都是一样的:
public void unlock() {
sync.release(1);
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
//唤醒被挂起的线程
unparkSuccessor(h);
return true;
}
return false;
}
//尝试释放锁
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
首先会判断当前线程是否为获得锁的线程,由于是重入锁所以需要将 state
减到 0 才认为完全释放锁。
释放之后需要调用 unparkSuccessor(h)
来唤醒被挂起的线程。
总结
由于公平锁需要关心队列的情况,得按照队列里的先后顺序来获取锁(会造成大量的线程上下文切换),而非公平锁则没有这个限制。
所以也就能解释非公平锁的效率会被公平锁更高。
羊群效应
- 这里说一下羊群效应,当有多个线程去竞争同一个锁的时候,假设锁被某个线程占用,那么如果有成千上万个线程在等待锁,有一种做法是同时唤醒这成千 上万个线程去去竞争锁,这个时候就发生了羊群效应,海量的竞争必然造成资源的剧增和浪费,因此终究只能有一个线程竞争成功,其他线程还是要老老实实的回去 等待。AQS 的 FIFO 的等待队列给解决在锁竞争方面的羊群效应问题提供了一个思路:保持一个 FIFO 队列,队列每个节点只关心其前一个节点的状态,线程 唤醒也只唤醒队头等待线程。其实这个思路已经被应用到了分布式锁的实践中,见:Zookeeper 分布式锁的改进实现方案。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论