- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
Trees
Think back to the syntax trees from Chapter 11 for a moment. Their structures are strikingly similar to the structure of a browser’s document. Each node may refer to other nodes, children, which in turn may have their own children. This shape is typical of nested structures where elements can contain sub-elements that are similar to themselves.
We call a data structure a tree when it has a branching structure, has no cycles (a node may not contain itself, directly or indirectly), and has a single, well-defined “root”. In the case of the DOM, document.documentElement
serves as the root.
Trees come up a lot in computer science. In addition to representing recursive structures such as HTML documents or programs, they are often used to maintain sorted sets of data because elements can usually be found or inserted more efficiently in a sorted tree than in a sorted flat array.
A typical tree has different kinds of nodes. The syntax tree for the Egg language had variables, values, and application nodes. Application nodes always have children, whereas variables and values are leaves, or nodes without children.
The same goes for the DOM. Nodes for regular elements, which represent HTML tags, determine the structure of the document. These can have child nodes. An example of such a node is document.body
. Some of these children can be leaf nodes, such as pieces of text or comments (comments are written between <!--
and -->
in HTML).
Each DOM node object has a nodeType
property, which contains a numeric code that identifies the type of node. Regular elements have the value 1, which is also defined as the constant property document.ELEMENT_NODE
. Text nodes, representing a section of text in the document, have the value 3 ( document.TEXT_NODE
). Comments have the value 8 ( document.COMMENT_NODE
).
So another way to visualize our document tree is as follows:
The leaves are text nodes, and the arrows indicate parent-child relationships between nodes.
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论