- Logstash
- Logstash - 入门示例
- 入门示例 - 下载安装
- 入门示例 - hello world
- 入门示例 - 配置语法
- 入门示例 - plugin的安装
- 入门示例 - 长期运行
- Logstash - 插件配置
- 插件配置 - input配置
- input配置 - file
- input配置 - stdin
- input配置 - syslog
- input配置 - tcp
- 插件配置 - codec配置
- codec配置 - json
- codec配置 - multiline
- codec配置 - collectd
- codec配置 - netflow
- 插件配置 - filter配置
- filter配置 - date
- filter配置 - grok
- filter配置 - dissect
- filter配置 - geoip
- filter配置 - json
- filter配置 - kv
- filter配置 - metrics
- filter配置 - mutate
- filter配置 - ruby
- filter配置 - split
- filter配置 - elapsed
- 插件配置 - output配置
- output配置 - elasticsearch
- output配置 - email
- output配置 - exec
- output配置 - file
- output配置 - nagios
- output配置 - statsd
- output配置 - stdout
- output配置 - tcp
- output配置 - hdfs
- Logstash - 场景示例
- 场景示例 - nginx访问日志
- 场景示例 - nginx错误日志
- 场景示例 - postfix日志
- 场景示例 - ossec日志
- 场景示例 - windows系统日志
- 场景示例 - Java日志
- 场景示例 - MySQL慢查询日志
- Logstash - 性能与测试
- 性能与测试 - generator方式
- 性能与测试 - 监控方案
- 监控方案 - logstash-input-heartbeat方式
- 监控方案 - jmx启动参数方式
- 监控方案 - API方式
- Logstash - 扩展方案
- 扩展方案 - 通过redis传输
- 扩展方案 - 通过kafka传输
- 扩展方案 - AIX 平台上的logstash-forwarder-java
- 扩展方案 - rsyslog
- 扩展方案 - nxlog
- 扩展方案 - heka
- 扩展方案 - fluent
- 扩展方案 - Message::Passing
- Logstash - 源码解析
- 源码解析 - pipeline流程
- 源码解析 - Event的生成
- Logstash - 插件开发
- 插件开发 - utmp插件示例
- Beats
- Beats - filebeat
- Beats - packetbeat网络流量分析
- Beats - metricbeat
- Beats - winlogbeat
- ElasticSearch
- ElasticSearch - 架构原理
- 架构原理 - segment、buffer和translog对实时性的影响
- 架构原理 - segment merge对写入性能的影响
- 架构原理 - routing和replica的读写过程
- 架构原理 - shard的allocate控制
- 架构原理 - 自动发现的配置
- ElasticSearch - 接口使用示例
- 接口使用示例 - 增删改查操作
- 接口使用示例 - 搜索请求
- 接口使用示例 - Painless脚本
- 接口使用示例 - reindex接口
- ElasticSearch - 性能优化
- 性能优化 - bulk提交
- 性能优化 - gateway配置
- 性能优化 - 集群状态维护
- 性能优化 - 缓存
- 性能优化 - fielddata
- 性能优化 - curator工具
- 性能优化 - profile接口
- ElasticSearch - rally测试方案
- ElasticSearch - 多集群互联
- ElasticSearch - 别名的应用
- ElasticSearch - 映射与模板的定制
- ElasticSearch - puppet-elasticsearch模块的使用
- ElasticSearch - 计划内停机升级的操作流程
- ElasticSearch - 镜像备份
- ElasticSearch - rollover和shrink
- ElasticSearch - Ingest节点
- ElasticSearch - Hadoop 集成
- Hadoop 集成 - spark streaming交互
- ElasticSearch - 权限管理
- 权限管理 - Shield
- 权限管理 - Search-Guard 在 Elasticsearch 2.x 上的运用
- ElasticSearch - 监控方案
- 监控方案 - 监控相关接口
- 监控相关接口 - 集群健康状态
- 监控相关接口 - 节点状态
- 监控相关接口 - 索引状态
- 监控相关接口 - 任务管理
- 监控相关接口 - cat 接口的命令行使用
- 监控方案 - 日志记录
- 监控方案 - 实时bigdesk方案
- 监控方案 - cerebro
- 监控方案 - zabbix trapper方案
- ElasticSearch - ES在运维监控领域的其他玩法
- ES在运维监控领域的其他玩法 - percolator接口
- ES在运维监控领域的其他玩法 - watcher报警
- ES在运维监控领域的其他玩法 - ElastAlert
- ES在运维监控领域的其他玩法 - 时序数据库
- ES在运维监控领域的其他玩法 - Grafana
- ES在运维监控领域的其他玩法 - juttle
- ES在运维监控领域的其他玩法 - Etsy的Kale异常检测
- Kibana 5
- Kibana 5 - 安装、配置和运行
- Kibana 5 - 生产环境部署
- Kibana 5 - discover功能
- Kibana 5 - 各visualize功能
- 各visualize功能 - area
- 各visualize功能 - table
- 各visualize功能 - line
- 各visualize功能 - markdown
- 各visualize功能 - metric
- 各visualize功能 - pie
- 各visualize功能 - tile map
- 各visualize功能 - vertical bar
- Kibana 5 - dashboard功能
- Kibana 5 - timelion 介绍
- Kibana 5 - console 介绍
- Kibana 5 - setting功能
- Kibana 5 - 常用sub agg示例
- 常用sub agg示例 - 函数堆栈链分析
- 常用sub agg示例 - 分图统计
- 常用sub agg示例 - TopN的时序趋势图
- 常用sub agg示例 - 响应时间的百分占比趋势图
- 常用sub agg示例 - 响应时间的概率分布在不同时段的相似度对比
- Kibana 5 - 源码解析
- 源码解析 - .kibana索引的数据结构
- 源码解析 - 主页入口
- 源码解析 - discover解析
- 源码解析 - visualize解析
- 源码解析 - dashboard解析
- Kibana 5 - 插件
- 插件 - 可视化开发示例
- 插件 - 后端开发示例
- 插件 - 完整app开发示例
- Kibana 5 - Kibana报表
- 竞品对比
接口使用示例 - Painless脚本
Elasticsearch 中,可以使用自定义脚本扩展功能。包括评分、过滤函数和聚合字段等方面。内置脚本引擎历经 MVEL、Groovy、Lucene expression 的变换后,Elastic.co 最终决定实现一个自己专用的 Painless 脚本语言,并在 5.0 版正式发布。
作为 Elastic Stack 场景,我们只介绍在聚合字段方面使用 script 的方式。
动态提交
最简单易用的方式,就是在正常的请求体中,把 field
换成 script
提交。比如一个标准的 terms agg 改成 script 方式,写法如下:
# curl 127.0.0.1:9200/logstash-2015.06.29/_search -d '{
"aggs" : {
"clientip_top10" : {
"terms" : {
"script" : {
"lang" : "painless",
"inline" : "doc['clientip'].value"
}
}
}
}
}'
在 script 中,有三种方式引用数据:doc['clientip'].value
、_field['clientip'].value
和 _source.clientip
。其区别在于:
doc[].value
读取 doc value 内的数据;_field[]
读取 field 设置"store":true
的存储内容;_source.obj.attr
读取_source
的 JSON 内容。
这也意味着,前者必须读取的是最终的词元字段数据,而后者可以返回任意的数据结构。
注意:如果有分词,且未禁用 fielddata 的话,doc[].value
读取到的是分词后的数据。所以请注意使用 doc['clientip.keyword'].value
写法。
固定文件
为了和动态提交的语法有区别,调用固定文件的写法如下:
# curl 127.0.0.1:9200/logstash-2015.06.29/_search -d '{
"aggs" : {
"clientip_subnet_top10" : {
"terms" : {
"script" : {
"file" : "getvalue",
"lang" : "groovy",
"params" : {
"fieldname": "clientip.keyword",
"pattern": "^((?:d{1,3}.?){3}).d{1,3}$"
}
}
}
}
}
}'
上例要求在 ES 集群的所有数据节点上,都保存有一个 /etc/elasticsearch/scripts/getvalue.groovy
文件,并且该脚本文件可以接收 fieldname
和 pattern
两个变量。试举例如下:
#!/usr/bin/env groovy
matcher = ( doc[fieldname].value =~ /${pattern}/ )
if (matcher.matches()) {
matcher[0][1]
}
注意:ES 进程默认每分钟扫描一次 /etc/elasticsearch/scripts/
目录,并尝试加载该目录下所有文件作为 script。所以,不要在该目录内做文件编辑等工作,不要分发 .svn 等目录到生成环境,这些临时或者隐藏文件都会被 ES 进程加载然后报错。
其他语言
ES 支持通过插件方式,扩展脚本语言的支持,目前默认自带的语言包括:
- painless
- lucene expression
- groovy
- mustache
而 github 上目前已有以下语言插件支持,基本覆盖了所有 JVM 上的可用语言:
- https://github.com/elastic/elasticsearch-lang-mvel
- https://github.com/elastic/elasticsearch-lang-javascript
- https://github.com/elastic/elasticsearch-lang-python
- https://github.com/hiredman/elasticsearch-lang-clojure
- https://github.com/felipehummel/elasticsearch-lang-scala
- https://github.com/fcheung/elasticsearch-jruby
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论