返回介绍

solution / 1500-1599 / 1579.Remove Max Number of Edges to Keep Graph Fully Traversable / README_EN

发布于 2024-06-17 01:03:17 字数 8443 浏览 0 评论 0 收藏 0

1579. Remove Max Number of Edges to Keep Graph Fully Traversable

中文文档

Description

Alice and Bob have an undirected graph of n nodes and three types of edges:

  • Type 1: Can be traversed by Alice only.
  • Type 2: Can be traversed by Bob only.
  • Type 3: Can be traversed by both Alice and Bob.

Given an array edges where edges[i] = [typei, ui, vi] represents a bidirectional edge of type typei between nodes ui and vi, find the maximum number of edges you can remove so that after removing the edges, the graph can still be fully traversed by both Alice and Bob. The graph is fully traversed by Alice and Bob if starting from any node, they can reach all other nodes.

Return _the maximum number of edges you can remove, or return_ -1 _if Alice and Bob cannot fully traverse the graph._

 

Example 1:

Input: n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]]
Output: 2
Explanation: If we remove the 2 edges [1,1,2] and [1,1,3]. The graph will still be fully traversable by Alice and Bob. Removing any additional edge will not make it so. So the maximum number of edges we can remove is 2.

Example 2:

Input: n = 4, edges = [[3,1,2],[3,2,3],[1,1,4],[2,1,4]]
Output: 0
Explanation: Notice that removing any edge will not make the graph fully traversable by Alice and Bob.

Example 3:

Input: n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]]
Output: -1
Explanation: In the current graph, Alice cannot reach node 4 from the other nodes. Likewise, Bob cannot reach 1. Therefore it's impossible to make the graph fully traversable.

 

 

Constraints:

  • 1 <= n <= 105
  • 1 <= edges.length <= min(105, 3 * n * (n - 1) / 2)
  • edges[i].length == 3
  • 1 <= typei <= 3
  • 1 <= ui < vi <= n
  • All tuples (typei, ui, vi) are distinct.

Solutions

Solution 1

class UnionFind:
  def __init__(self, n):
    self.p = list(range(n))
    self.size = [1] * n
    self.cnt = n

  def find(self, x):
    if self.p[x] != x:
      self.p[x] = self.find(self.p[x])
    return self.p[x]

  def union(self, a, b):
    pa, pb = self.find(a - 1), self.find(b - 1)
    if pa == pb:
      return False
    if self.size[pa] > self.size[pb]:
      self.p[pb] = pa
      self.size[pa] += self.size[pb]
    else:
      self.p[pa] = pb
      self.size[pb] += self.size[pa]
    self.cnt -= 1
    return True


class Solution:
  def maxNumEdgesToRemove(self, n: int, edges: List[List[int]]) -> int:
    ufa = UnionFind(n)
    ufb = UnionFind(n)
    ans = 0
    for t, u, v in edges:
      if t == 3:
        if ufa.union(u, v):
          ufb.union(u, v)
        else:
          ans += 1
    for t, u, v in edges:
      if t == 1:
        ans += not ufa.union(u, v)
      if t == 2:
        ans += not ufb.union(u, v)
    return ans if ufa.cnt == 1 and ufb.cnt == 1 else -1
class UnionFind {
  private int[] p;
  private int[] size;
  public int cnt;

  public UnionFind(int n) {
    p = new int[n];
    size = new int[n];
    for (int i = 0; i < n; ++i) {
      p[i] = i;
      size[i] = 1;
    }
    cnt = n;
  }

  public int find(int x) {
    if (p[x] != x) {
      p[x] = find(p[x]);
    }
    return p[x];
  }

  public boolean union(int a, int b) {
    int pa = find(a - 1), pb = find(b - 1);
    if (pa == pb) {
      return false;
    }
    if (size[pa] > size[pb]) {
      p[pb] = pa;
      size[pa] += size[pb];
    } else {
      p[pa] = pb;
      size[pb] += size[pa];
    }
    --cnt;
    return true;
  }
}

class Solution {
  public int maxNumEdgesToRemove(int n, int[][] edges) {
    UnionFind ufa = new UnionFind(n);
    UnionFind ufb = new UnionFind(n);
    int ans = 0;
    for (var e : edges) {
      int t = e[0], u = e[1], v = e[2];
      if (t == 3) {
        if (ufa.union(u, v)) {
          ufb.union(u, v);
        } else {
          ++ans;
        }
      }
    }
    for (var e : edges) {
      int t = e[0], u = e[1], v = e[2];
      if (t == 1 && !ufa.union(u, v)) {
        ++ans;
      }
      if (t == 2 && !ufb.union(u, v)) {
        ++ans;
      }
    }
    return ufa.cnt == 1 && ufb.cnt == 1 ? ans : -1;
  }
}
class UnionFind {
public:
  int cnt;

  UnionFind(int n) {
    p = vector<int>(n);
    size = vector<int>(n, 1);
    iota(p.begin(), p.end(), 0);
    cnt = n;
  }

  bool unite(int a, int b) {
    int pa = find(a - 1), pb = find(b - 1);
    if (pa == pb) {
      return false;
    }
    if (size[pa] > size[pb]) {
      p[pb] = pa;
      size[pa] += size[pb];
    } else {
      p[pa] = pb;
      size[pb] += size[pa];
    }
    --cnt;
    return true;
  }

  int find(int x) {
    if (p[x] != x) {
      p[x] = find(p[x]);
    }
    return p[x];
  }

private:
  vector<int> p, size;
};

class Solution {
public:
  int maxNumEdgesToRemove(int n, vector<vector<int>>& edges) {
    UnionFind ufa(n);
    UnionFind ufb(n);
    int ans = 0;
    for (auto& e : edges) {
      int t = e[0], u = e[1], v = e[2];
      if (t == 3) {
        if (ufa.unite(u, v)) {
          ufb.unite(u, v);
        } else {
          ++ans;
        }
      }
    }
    for (auto& e : edges) {
      int t = e[0], u = e[1], v = e[2];
      ans += t == 1 && !ufa.unite(u, v);
      ans += t == 2 && !ufb.unite(u, v);
    }
    return ufa.cnt == 1 && ufb.cnt == 1 ? ans : -1;
  }
};
type unionFind struct {
  p, size []int
  cnt   int
}

func newUnionFind(n int) *unionFind {
  p := make([]int, n)
  size := make([]int, n)
  for i := range p {
    p[i] = i
    size[i] = 1
  }
  return &unionFind{p, size, n}
}

func (uf *unionFind) find(x int) int {
  if uf.p[x] != x {
    uf.p[x] = uf.find(uf.p[x])
  }
  return uf.p[x]
}

func (uf *unionFind) union(a, b int) bool {
  pa, pb := uf.find(a-1), uf.find(b-1)
  if pa == pb {
    return false
  }
  if uf.size[pa] > uf.size[pb] {
    uf.p[pb] = pa
    uf.size[pa] += uf.size[pb]
  } else {
    uf.p[pa] = pb
    uf.size[pb] += uf.size[pa]
  }
  uf.cnt--
  return true
}

func maxNumEdgesToRemove(n int, edges [][]int) (ans int) {
  ufa := newUnionFind(n)
  ufb := newUnionFind(n)
  for _, e := range edges {
    t, u, v := e[0], e[1], e[2]
    if t == 3 {
      if ufa.union(u, v) {
        ufb.union(u, v)
      } else {
        ans++
      }
    }
  }
  for _, e := range edges {
    t, u, v := e[0], e[1], e[2]
    if t == 1 && !ufa.union(u, v) {
      ans++
    }
    if t == 2 && !ufb.union(u, v) {
      ans++
    }
  }
  if ufa.cnt == 1 && ufb.cnt == 1 {
    return
  }
  return -1
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文