- Algorithm
- Incremental Method
- Simulation
- Backtracking
- Dynamic Programming
- Largest Empty Interval
- Location Allocation Problem
- Knapsack Problem
- Algorithm Analysis
- Data
- Sort
- Set
- 排序资料结构: Search Tree 系列
- Sequence 资料结构: Array / List
- 大量 Point 资料结构: k-Dimensional Tree
- Region 资料结构: Uniform Grid
- Graph
- Tree 资料结构: Heavy-Light Decomposition
- Graph Spectrum(Under Construction!)
- Tree
- Binary Tree
- Directed Acyclic Graph
- Articulation Vertex / Bridge
- Reachability
- Bipartite Graph
- Clique(Under Construction!)
- Planar Graph
- Path
- Single Source Shortest Paths: Label Correcting Algorithm
- Shortest Walk
- Cycle
- Spanning Tree
- s-t Flow
- Feasible s-t Flow
- Cut
- Matching
- T-Join
- Hamilton Circuit
- Domination
- Coloring
- Labeling
- Vector Product
- Sweep Line
- Rectangle
- Rectangle
- Polygon
- Convex Hull
- 3D Convex Hull(Under Construction!)
- Half-plane Intersection
- Voronoi Diagram
- Triangulation
- Metric
- Number
- Sequence
- Function (ℝ)
- Matrix
- Root Finding
- Linear Equations
- Functional Equation
- Optimization
- Interpolation
- Curve
- Regression
- Estimation
- Clustering
- Transformation(Under Construction!)
- Wave (ℝ)
- Representation
- Signal
- State(Under Construction!)
- Markov Chain
- System(Under Construction!)
- Markov Model
- Function
- Gray Code
- Base
- Divisor
- Prime
- Residue
- Lattice
- Series(Under Construction!)
- Average Number
- Nim
- String
- Longest Increasing Subsequence
- Longest Common Subsequence
- Approximate String Matching
- String Matching
- String Matching
- String Matching: Inverted Index
- Count Substrings
- Palindrome
- Language
- Code
- Compression
- Correction
- Encryption
- Transmission
- Data
- Text
- 2D Graphics
- Audio
- Audition(Under Construction!)
- Image
- Vision(Under Construction!)
- Model
- Motion(Under Construction!)
- Camera(Under Construction!)
- Glass(Under Construction!)
- Computer
- Physics
- Biology
- Medicine
- Finance
- Education
- Standard Library
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Lattice
Lattice
UVa 11768
Pick's Theorem
计算简单多边形内部格点数目,多边形的顶点刚好都在格点上
利用 Pick's Theorem 可以迅速求出简单多边形内部会有多少像素,限制是简单多边形的顶点必须不偏不倚位于像素上。
简单多边形面积 = 简单多边形围住的像素数目 + 简单多边形上的像素数目 / 2 - 1
简单多边形其中一条边上面的像素数目,可以利用边的起点座标与终点座标,以 X 轴差与 Y 轴差的最大公因数求得。
UVa 10088
计算简单多边形内部格点数目,多边形的顶点在任意位置
【待补文字】
Farey Sequence
http://www.matrix67.com/blog/archives/2199
UVa 10408 10214
Integer Relation(Under Construction)
http://oldweb.cecm.sfu.ca/projects/IntegerRelations/fpsac97/
lattice basis reduction
http://cseweb.ucsd.edu/classes/wi12/cse206A-a/ http://cseweb.ucsd.edu/classes/wi10/cse206a/
Integer Relation: Lenstra-Lenstra-Lovasz Algorithm(Under Construction)
Integer Relation: HJLS Algorithm(Under Construction)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论