- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Curve fitting
Sometimes, we simply want to use non-linear least squares to fit a function to data, perhaps to estimate paramters for a mechanistic or phenomenological model. The curve_fit
function uses the quasi-Newton Levenberg-Marquadt aloorithm to perform such fits. Behind the scnees, curve_fit
is just a wrapper around the leastsq
function that we have already seen in a more conveneint format.
from scipy.optimize import curve_fit
def logistic4(x, a, b, c, d): """The four paramter logistic function is often used to fit dose-response relationships.""" return ((a-d)/(1.0+((x/c)**b))) + d
nobs = 24 xdata = np.linspace(0.5, 3.5, nobs) ptrue = [10, 3, 1.5, 12] ydata = logistic4(xdata, *ptrue) + 0.5*np.random.random(nobs)
popt, pcov = curve_fit(logistic4, xdata, ydata)
perr = yerr=np.sqrt(np.diag(pcov)) print 'Param\tTrue\tEstim (+/- 1 SD)' for p, pt, po, pe in zip('abcd', ptrue, popt, perr): print '%s\t%5.2f\t%5.2f (+/-%5.2f)' % (p, pt, po, pe)
Param True Estim (+/- 1 SD) a 10.00 10.26 (+/- 0.15) b 3.00 3.06 (+/- 0.76) c 1.50 1.62 (+/- 0.11) d 12.00 12.41 (+/- 0.20)
x = np.linspace(0, 4, 100) y = logistic4(x, *popt) plt.plot(xdata, ydata, 'o') plt.plot(x, y);
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论