返回介绍

solution / 2600-2699 / 2638.Count the Number of K-Free Subsets / README_EN

发布于 2024-06-17 01:03:01 字数 6498 浏览 0 评论 0 收藏 0

2638. Count the Number of K-Free Subsets

中文文档

Description

You are given an integer array nums, which contains distinct elements and an integer k.

A subset is called a k-Free subset if it contains no two elements with an absolute difference equal to k. Notice that the empty set is a k-Free subset.

Return _the number of k-Free subsets of _nums.

A subset of an array is a selection of elements (possibly none) of the array.

 

Example 1:

Input: nums = [5,4,6], k = 1
Output: 5
Explanation: There are 5 valid subsets: {}, {5}, {4}, {6} and {4, 6}.

Example 2:

Input: nums = [2,3,5,8], k = 5
Output: 12
Explanation: There are 12 valid subsets: {}, {2}, {3}, {5}, {8}, {2, 3}, {2, 3, 5}, {2, 5}, {2, 5, 8}, {2, 8}, {3, 5} and {5, 8}.

Example 3:

Input: nums = [10,5,9,11], k = 20
Output: 16
Explanation: All subsets are valid. Since the total count of subsets is 24 = 16, so the answer is 16. 

 

Constraints:

  • 1 <= nums.length <= 50
  • 1 <= nums[i] <= 1000
  • 1 <= k <= 1000

Solutions

Solution 1: Grouping + Dynamic Programming

First, sort the array $nums$ in ascending order, and then group the elements in the array according to the remainder modulo $k$, that is, the elements $nums[i] \bmod k$ with the same remainder are in the same group. Then for any two elements in different groups, their absolute difference is not equal to $k$. Therefore, we can obtain the number of subsets in each group, and then multiply the number of subsets in each group to obtain the answer.

For each group $arr$, we can use dynamic programming to obtain the number of subsets. Let $f[i]$ denote the number of subsets of the first $i$ elements, and initially $f[0] = 1$, and $f[1]=2$. When $i \geq 2$, if $arr[i-1]-arr[i-2]=k$, if we choose $arr[i-1]$, then $f[i]=f[i-2]$; If we do not choose $arr[i-1]$, then $f[i]=f[i-1]$. Therefore, when $arr[i-1]-arr[i-2]=k$, we have $f[i]=f[i-1]+f[i-2]$; otherwise $f[i] = f[i - 1] \times 2$. The number of subsets of this group is $f[m]$, where $m$ is the length of the array $arr$.

Finally, we multiply the number of subsets of each group to obtain the answer.

The time complexity is $O(n \times \log n)$ and the space complexity is $O(n)$, where $n$ is the length of the array $nums$.

class Solution:
  def countTheNumOfKFreeSubsets(self, nums: List[int], k: int) -> int:
    nums.sort()
    g = defaultdict(list)
    for x in nums:
      g[x % k].append(x)
    ans = 1
    for arr in g.values():
      m = len(arr)
      f = [0] * (m + 1)
      f[0] = 1
      f[1] = 2
      for i in range(2, m + 1):
        if arr[i - 1] - arr[i - 2] == k:
          f[i] = f[i - 1] + f[i - 2]
        else:
          f[i] = f[i - 1] * 2
      ans *= f[m]
    return ans
class Solution {
  public long countTheNumOfKFreeSubsets(int[] nums, int k) {
    Arrays.sort(nums);
    Map<Integer, List<Integer>> g = new HashMap<>();
    for (int i = 0; i < nums.length; ++i) {
      g.computeIfAbsent(nums[i] % k, x -> new ArrayList<>()).add(nums[i]);
    }
    long ans = 1;
    for (var arr : g.values()) {
      int m = arr.size();
      long[] f = new long[m + 1];
      f[0] = 1;
      f[1] = 2;
      for (int i = 2; i <= m; ++i) {
        if (arr.get(i - 1) - arr.get(i - 2) == k) {
          f[i] = f[i - 1] + f[i - 2];
        } else {
          f[i] = f[i - 1] * 2;
        }
      }
      ans *= f[m];
    }
    return ans;
  }
}
class Solution {
public:
  long long countTheNumOfKFreeSubsets(vector<int>& nums, int k) {
    sort(nums.begin(), nums.end());
    unordered_map<int, vector<int>> g;
    for (int i = 0; i < nums.size(); ++i) {
      g[nums[i] % k].push_back(nums[i]);
    }
    long long ans = 1;
    for (auto& [_, arr] : g) {
      int m = arr.size();
      long long f[m + 1];
      f[0] = 1;
      f[1] = 2;
      for (int i = 2; i <= m; ++i) {
        if (arr[i - 1] - arr[i - 2] == k) {
          f[i] = f[i - 1] + f[i - 2];
        } else {
          f[i] = f[i - 1] * 2;
        }
      }
      ans *= f[m];
    }
    return ans;
  }
};
func countTheNumOfKFreeSubsets(nums []int, k int) int64 {
  sort.Ints(nums)
  g := map[int][]int{}
  for _, x := range nums {
    g[x%k] = append(g[x%k], x)
  }
  ans := int64(1)
  for _, arr := range g {
    m := len(arr)
    f := make([]int64, m+1)
    f[0] = 1
    f[1] = 2
    for i := 2; i <= m; i++ {
      if arr[i-1]-arr[i-2] == k {
        f[i] = f[i-1] + f[i-2]
      } else {
        f[i] = f[i-1] * 2
      }
    }
    ans *= f[m]
  }
  return ans
}
function countTheNumOfKFreeSubsets(nums: number[], k: number): number {
  nums.sort((a, b) => a - b);
  const g: Map<number, number[]> = new Map();
  for (const x of nums) {
    const y = x % k;
    if (!g.has(y)) {
      g.set(y, []);
    }
    g.get(y)!.push(x);
  }
  let ans: number = 1;
  for (const [_, arr] of g) {
    const m = arr.length;
    const f: number[] = new Array(m + 1).fill(1);
    f[1] = 2;
    for (let i = 2; i <= m; ++i) {
      if (arr[i - 1] - arr[i - 2] === k) {
        f[i] = f[i - 1] + f[i - 2];
      } else {
        f[i] = f[i - 1] * 2;
      }
    }
    ans *= f[m];
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文