- 前言
- 第2版与第1版的区别
- 本书面向的读者
- 如何阅读本书
- 语言约定
- 内容特色
- 参考资料
- 第一部分 走近 Java
- 第1章 走近 Java
- 第二部分 自动内存管理机制
- 第2章 Java 内存区域与内存溢出异常
- 第3章 垃圾收集器与内存分配策略
- 第4章 虚拟机性能监控与故障处理工具
- 第5章 调优案例分析与实战
- 第三部分 虚拟机执行子系统
- 第6章 类文件结构
- 第7章 虚拟机类加载机制
- 第8章 虚拟机字节码执行引擎
- 第9章 类加载及执行子系统的案例与实战
- 第四部分 程序编译与代码优化
- 第10章 早期(编译期)优化
- 第11章 晚期(运行期)优化
- 第五部分 高效并发
- 第12章 Java 内存模型与线程
- 第13章 线程安全与锁优化
- 附录
- 附录A 编译 Windows 版的 OpenJDK
- 附录B 虚拟机字节码指令表
- 附录C HotSpot 虚拟机主要参数表
- 附录D 对象查询语言(OQL)简介[1]
- 附录E JDK 历史版本轨迹
2.3 HotSpot 虚拟机对象探秘
介绍完Java虚拟机的运行时数据区之后,我们大致知道了虚拟机内存的概况,读者了解了内存中放了些什么后,也许就会想更进一步了解这些虚拟机内存中的数据的其他细节,譬如它们是如何创建、如何布局以及如何访问的。对于这样涉及细节的问题,必须把讨论范围限定在具体的虚拟机和集中在某一个内存区域上才有意义。基于实用优先的原则,笔者以常用的虚拟机HotSpot和常用的内存区域Java堆为例,深入探讨HotSpot虚拟机在Java堆中对象分配、布局和访问的全过程。
2.3.1 对象的创建
Java是一门面向对象的编程语言,在Java程序运行过程中无时无刻都有对象被创建出来。在语言层面上,创建对象(例如克隆、反序列化)通常仅仅是一个new关键字而已,而在虚拟机中,对象(文中讨论的对象限于普通Java对象,不包括数组和Class对象等)的创建又是怎样一个过程呢?
虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程,本书第7章将探讨这部分内容的细节。
在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定(如何确定将在2.3.2节中介绍),为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来。假设Java堆中内存是绝对规整的,所有用过的内存都放在一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”(Bump the Pointer)。如果Java堆中的内存并不是规整的,已使用的内存和空闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”(Free List)。选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。因此,在使用Serial、ParNew等带Compact过程的收集器时,系统采用的分配算法是指针碰撞,而使用CMS这种基于Mark-Sweep算法的收集器时,通常采用空闲列表。
除如何划分可用空间之外,还有另外一个需要考虑的问题是对象创建在虚拟机中是非常频繁的行为,即使是仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。解决这个问题有两种方案,一种是对分配内存空间的动作进行同步处理——实际上虚拟机采用CAS配上失败重试的方式保证更新操作的原子性;另一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer,TLAB)。哪个线程要分配内存,就在哪个线程的TLAB上分配,只有TLAB用完并分配新的TLAB时,才需要同步锁定。虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB参数来设定。
内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),如果使用TLAB,这一工作过程也可以提前至TLAB分配时进行。这一步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。
接下来,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头(Object Header)之中。根据虚拟机当前的运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。关于对象头的具体内容,稍后再做详细介绍。
在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从Java程序的视角来看,对象创建才刚刚开始——<init>方法还没有执行,所有的字段都还为零。所以,一般来说(由字节码中是否跟随invokespecial指令所决定),执行new指令之后会接着执行<init>方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。
下面的代码清单2-1是HotSpot虚拟机bytecodeInterpreter.cpp中的代码片段(这个解释器实现很少有机会实际使用,因为大部分平台上都使用模板解释器;当代码通过JIT编译器执行时差异就更大了。不过,这段代码用于了解HotSpot的运作过程是没有什么问题的)。
代码清单2-1 HotSpot解释器的代码片段
//确保常量池中存放的是已解释的类 if(!constants->tag_at(index).is_unresolved_klass()){ //断言确保是klassOop和instanceKlassOop(这部分下一节介绍) oop entry=(klassOop)*constants->obj_at_addr(index); assert(entry->is_klass(),"Should be resolved klass"); klassOop k_entry=(klassOop)entry; assert(k_entry->klass_part()->oop_is_instance(),"Should be instanceKlass"); instanceKlass * ik=(instanceKlass*)k_entry->klass_part(); //确保对象所属类型已经经过初始化阶段 if(ik->is_initialized()&&ik->can_be_fastpath_allocated()) { //取对象长度 size_t obj_size=ik->size_helper(); oop result=NULL; //记录是否需要将对象所有字段置零值 bool need_zero=!ZeroTLAB; //是否在TLAB中分配对象 if(UseTLAB){ result=(oop)THREAD->tlab().allocate(obj_size); } if(result==NULL){ need_zero=true; //直接在eden中分配对象 retry: HeapWord * compare_to=*Universe:heap()->top_addr(); HeapWord * new_top=compare_to+obj_size; /*cmpxchg是x86中的CAS指令,这里是一个C++方法,通过CAS方式分配空间,如果并发失败, 转到retry中重试,直至成功分配为止*/ if(new_top<=*Universe:heap()->end_addr()){ if(Atomic:cmpxchg_ptr(new_top,Universe:heap()->top_addr(),compare_to)!=compare_to){ goto retry; } result=(oop)compare_to; } } if(result!=NULL){ //如果需要,则为对象初始化零值 if(need_zero){ HeapWord * to_zero=(HeapWord*)result+sizeof(oopDesc)/oopSize; obj_size-=sizeof(oopDesc)/oopSize; if(obj_size>0){ memset(to_zero,0,obj_size * HeapWordSize); } } //根据是否启用偏向锁来设置对象头信息 if(UseBiasedLocking){ result->set_mark(ik->prototype_header()); }else{ result->set_mark(markOopDesc:prototype()); } result->set_klass_gap(0); result->set_klass(k_entry); //将对象引用入栈,继续执行下一条指令 SET_STACK_OBJECT(result,0); UPDATE_PC_AND_TOS_AND_CONTINUE(3,1); } } }
2.3.2 对象的内存布局
在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。
HotSpot虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等,这部分数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32bit和64bit,官方称它为“Mark Word”。对象需要存储的运行时数据很多,其实已经超出了32位、64位Bitmap结构所能记录的限度,但是对象头信息是与对象自身定义的数据无关的额外存储成本,考虑到虚拟机的空间效率,Mark Word被设计成一个非固定的数据结构以便在极小的空间内存储尽量多的信息,它会根据对象的状态复用自己的存储空间。例如,在32位的HotSpot虚拟机中,如果对象处于未被锁定的状态下,那么Mark Word的32bit空间中的25bit用于存储对象哈希码,4bit用于存储对象分代年龄,2bit用于存储锁标志位,1bit固定为0,而在其他状态(轻量级锁定、重量级锁定、GC标记、可偏向)下对象的存储内容见表2-1。
对象头的另外一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。并不是所有的虚拟机实现都必须在对象数据上保留类型指针,换句话说,查找对象的元数据信息并不一定要经过对象本身,这点将在2.3.3节讨论。另外,如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是从数组的元数据中却无法确定数组的大小。
代码清单2-2为HotSpot虚拟机markOop.cpp中的代码(注释)片段,它描述了32bit下Mark Word的存储状态。
代码清单2-2 markOop.cpp片段
//Bit-format of an object header(most significant first,big endian layout below): //32 bits: //-------- //hash:25------------>|age:4 biased_lock:1 lock:2(normal object) //JavaThread*:23 epoch:2 age:4 biased_lock:1 lock:2(biased object) //size:32------------------------------------------>|(CMS free block) //PromotedObject*:29---------->|promo_bits:3----->|(CMS promoted object)
接下来的实例数据部分是对象真正存储的有效信息,也是在程序代码中所定义的各种类型的字段内容。无论是从父类继承下来的,还是在子类中定义的,都需要记录起来。这部分的存储顺序会受到虚拟机分配策略参数(FieldsAllocationStyle)和字段在Java源码中定义顺序的影响。HotSpot虚拟机默认的分配策略为longs/doubles、ints、shorts/chars、bytes/booleans、oops(Ordinary Object Pointers),从分配策略中可以看出,相同宽度的字段总是被分配到一起。在满足这个前提条件的情况下,在父类中定义的变量会出现在子类之前。如果CompactFields参数值为true(默认为true),那么子类之中较窄的变量也可能会插入到父类变量的空隙之中。
第三部分对齐填充并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot VM的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说,就是对象的大小必须是8字节的整数倍。而对象头部分正好是8字节的倍数(1倍或者2倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。
2.3.3 对象的访问定位
建立对象是为了使用对象,我们的Java程序需要通过栈上的reference数据来操作堆上的具体对象。由于reference类型在Java虚拟机规范中只规定了一个指向对象的引用,并没有定义这个引用应该通过何种方式去定位、访问堆中的对象的具体位置,所以对象访问方式也是取决于虚拟机实现而定的。目前主流的访问方式有使用句柄和直接指针两种。
如果使用句柄访问的话,那么Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息,如图2-2所示。
图 2-2 通过句柄访问对象
如果使用直接指针访问,那么Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而reference中存储的直接就是对象地址,如图2-3所示。
图 2-3 通过直接指针访问对象
这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要修改。
使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是一项非常可观的执行成本。就本书讨论的主要虚拟机Sun HotSpot而言,它是使用第二种方式进行对象访问的,但从整个软件开发的范围来看,各种语言和框架使用句柄来访问的情况也十分常见。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论