- 前言
- 目标读者
- 非目标读者
- 本书的结构
- 以实践为基础
- 硬件
- 杂谈:个人的一点看法
- Python 术语表
- Python 版本表
- 排版约定
- 使用代码示例
- 第一部分 序幕
- 第 1 章 Python 数据模型
- 第二部分 数据结构
- 第 2 章 序列构成的数组
- 第 3 章 字典和集合
- 第 4 章 文本和字节序列
- 第三部分 把函数视作对象
- 第 5 章 一等函数
- 第 6 章 使用一等函数实现设计模式
- 第 7 章 函数装饰器和闭包
- 第四部分 面向对象惯用法
- 第 8 章 对象引用、可变性和垃圾回收
- 第 9 章 符合 Python 风格的对象
- 第 10 章 序列的修改、散列和切片
- 第 11 章 接口:从协议到抽象基类
- 第 12 章 继承的优缺点
- 第 13 章 正确重载运算符
- 第五部分 控制流程
- 第 14 章 可迭代的对象、迭代器和生成器
- 14.1 Sentence 类第1版:单词序列
- 14.2 可迭代的对象与迭代器的对比
- 14.3 Sentence 类第2版:典型的迭代器
- 14.4 Sentence 类第3版:生成器函数
- 14.5 Sentence 类第4版:惰性实现
- 14.6 Sentence 类第5版:生成器表达式
- 14.7 何时使用生成器表达式
- 14.8 另一个示例:等差数列生成器
- 14.9 标准库中的生成器函数
- 14.10 Python 3.3 中新出现的句法:yield from
- 14.11 可迭代的归约函数
- 14.12 深入分析 iter 函数
- 14.13 案例分析:在数据库转换工具中使用生成器
- 14.14 把生成器当成协程
- 14.15 本章小结
- 14.16 延伸阅读
- 第 15 章 上下文管理器和 else 块
- 第 16 章 协程
- 第 17 章 使用期物处理并发
- 第 18 章 使用 asyncio 包处理并发
- 第六部分 元编程
- 第 19 章 动态属性和特性
- 第 20 章 属性描述符
- 第 21 章 类元编程
- 结语
- 延伸阅读
- 附录 A 辅助脚本
- Python 术语表
- 作者简介
- 关于封面
7.7 实现一个简单的装饰器
示例 7-15 定义了一个装饰器,它会在每次调用被装饰的函数时计时,然后把经过的时间、传入的参数和调用的结果打印出来。
示例 7-15 一个简单的装饰器,输出函数的运行时间
import time def clock(func): def clocked(*args): # ➊ t0 = time.perf_counter() result = func(*args) # ➋ elapsed = time.perf_counter() - t0 name = func.__name__ arg_str = ', '.join(repr(arg) for arg in args) print('[%0.8fs] %s(%s) -> %r' % (elapsed, name, arg_str, result)) return result return clocked # ➌
❶ 定义内部函数 clocked,它接受任意个定位参数。
❷ 这行代码可用,是因为 clocked 的闭包中包含自由变量 func。
❸ 返回内部函数,取代被装饰的函数。示例 7-16 演示了 clock 装饰器的用法。
示例 7-16 使用 clock 装饰器
# clockdeco_demo.py import time from clockdeco import clock @clock def snooze(seconds): time.sleep(seconds) @clock def factorial(n): return 1 if n < 2 else n*factorial(n-1) if __name__=='__main__': print('*' * 40, 'Calling snooze(.123)') snooze(.123) print('*' * 40, 'Calling factorial(6)') print('6! =', factorial(6))
运行示例 7-16 得到的输出如下:
$ python3 clockdeco_demo.py **************************************** Calling snooze(.123) [0.12405610s] snooze(.123) -> None **************************************** Calling factorial(6) [0.00000191s] factorial(1) -> 1 [0.00004911s] factorial(2) -> 2 [0.00008488s] factorial(3) -> 6 [0.00013208s] factorial(4) -> 24 [0.00019193s] factorial(5) -> 120 [0.00026107s] factorial(6) -> 720 6! = 720
工作原理
记得吗,如下代码:
@clock def factorial(n): return 1 if n < 2 else n*factorial(n-1)
其实等价于:
def factorial(n): return 1 if n < 2 else n*factorial(n-1) factorial = clock(factorial)
因此,在两个示例中,factorial 会作为 func 参数传给 clock(参见示例 7-15)。然后, clock 函数会返回 clocked 函数,Python 解释器在背后会把 clocked 赋值给 factorial。其实,导入 clockdeco_demo 模块后查看 factorial 的 __name__ 属性,会得到如下结果:
>>> import clockdeco_demo >>> clockdeco_demo.factorial.__name__ 'clocked' >>>
所以,现在 factorial 保存的是 clocked 函数的引用。自此之后,每次调用 factorial(n),执行的都是 clocked(n)。clocked 大致做了下面几件事。
(1) 记录初始时间 t0。
(2) 调用原来的 factorial 函数,保存结果。
(3) 计算经过的时间。
(4) 格式化收集的数据,然后打印出来。
(5) 返回第 2 步保存的结果。
这是装饰器的典型行为:把被装饰的函数替换成新函数,二者接受相同的参数,而且(通常)返回被装饰的函数本该返回的值,同时还会做些额外操作。
Gamma 等人写的《设计模式:可复用面向对象软件的基础》一书是这样概述“装饰器”模式的:“动态地给一个对象添加一些额外的职责。”函数装饰器符合这一说法。但是,在实现层面,Python 装饰器与《设计模式:可复用面向对象软件的基础》中所述的“装饰器”没有多少相似之处。“杂谈”会进一步探讨这个话题。
示例 7-15 中实现的 clock 装饰器有几个缺点:不支持关键字参数,而且遮盖了被装饰函数的 __name__ 和 __doc__ 属性。示例 7-17 使用 functools.wraps 装饰器把相关的属性从 func 复制到 clocked 中。此外,这个新版还能正确处理关键字参数。
示例 7-17 改进后的 clock 装饰器
# clockdeco2.py import time import functools def clock(func): @functools.wraps(func) def clocked(*args, **kwargs): t0 = time.time() result = func(*args, **kwargs) elapsed = time.time() - t0 name = func.__name__ arg_lst = [] if args: arg_lst.append(', '.join(repr(arg) for arg in args)) if kwargs: pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())] arg_lst.append(', '.join(pairs)) arg_str = ', '.join(arg_lst) print('[%0.8fs] %s(%s) -> %r ' % (elapsed, name, arg_str, result)) return result return clocked
functools.wraps 只是标准库中拿来即用的装饰器之一。下一节将介绍 functools 模块中最让人印象深刻的两个装饰器:lru_cache 和 singledispatch。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论