返回介绍

solution / 1200-1299 / 1283.Find the Smallest Divisor Given a Threshold / README_EN

发布于 2024-06-17 01:03:21 字数 5893 浏览 0 评论 0 收藏 0

1283. Find the Smallest Divisor Given a Threshold

中文文档

Description

Given an array of integers nums and an integer threshold, we will choose a positive integer divisor, divide all the array by it, and sum the division's result. Find the smallest divisor such that the result mentioned above is less than or equal to threshold.

Each result of the division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5).

The test cases are generated so that there will be an answer.

 

Example 1:

Input: nums = [1,2,5,9], threshold = 6
Output: 5
Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. 
If the divisor is 4 we can get a sum of 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). 

Example 2:

Input: nums = [44,22,33,11,1], threshold = 5
Output: 44

 

Constraints:

  • 1 <= nums.length <= 5 * 104
  • 1 <= nums[i] <= 106
  • nums.length <= threshold <= 106

Solutions

Solution 1: Binary Search

Notice that for number $v$, if the sum of results of dividing each number in $nums$ by $v$ is less than or equal to $threshold$, then all values greater than $v$ satisfy the condition. There is a monotonicity, so we can use binary search to find the smallest $v$ that satisfies the condition.

We define the left boundary of the binary search $l=1$, $r=\max(nums)$. Each time we take $mid=(l+r)/2$, calculate the sum of the results of dividing each number in $nums$ by $mid$ $s$, if $s$ is less than or equal to $threshold$, then it means that $mid$ satisfies the condition, we will update $r$ to $mid$, otherwise we will update $l$ to $mid+1$.

Finally, return $l$.

The time complexity is $O(n \times \log M)$, where $n$ is the length of the array $nums$ and $M$ is the maximum value in the array $nums$. The space complexity is $O(1)$.

class Solution:
  def smallestDivisor(self, nums: List[int], threshold: int) -> int:
    l, r = 1, max(nums)
    while l < r:
      mid = (l + r) >> 1
      if sum((x + mid - 1) // mid for x in nums) <= threshold:
        r = mid
      else:
        l = mid + 1
    return l
class Solution:
  def smallestDivisor(self, nums: List[int], threshold: int) -> int:
    def f(v: int) -> bool:
      v += 1
      return sum((x + v - 1) // v for x in nums) <= threshold

    return bisect_left(range(max(nums)), True, key=f) + 1
class Solution {
  public int smallestDivisor(int[] nums, int threshold) {
    int l = 1, r = 1000000;
    while (l < r) {
      int mid = (l + r) >> 1;
      int s = 0;
      for (int x : nums) {
        s += (x + mid - 1) / mid;
      }
      if (s <= threshold) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  }
}
class Solution {
public:
  int smallestDivisor(vector<int>& nums, int threshold) {
    int l = 1;
    int r = *max_element(nums.begin(), nums.end());
    while (l < r) {
      int mid = (l + r) >> 1;
      int s = 0;
      for (int x : nums) {
        s += (x + mid - 1) / mid;
      }
      if (s <= threshold) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  }
};
func smallestDivisor(nums []int, threshold int) int {
  return sort.Search(1000000, func(v int) bool {
    v++
    s := 0
    for _, x := range nums {
      s += (x + v - 1) / v
    }
    return s <= threshold
  }) + 1
}
function smallestDivisor(nums: number[], threshold: number): number {
  let l = 1;
  let r = Math.max(...nums);
  while (l < r) {
    const mid = (l + r) >> 1;
    let s = 0;
    for (const x of nums) {
      s += Math.ceil(x / mid);
    }
    if (s <= threshold) {
      r = mid;
    } else {
      l = mid + 1;
    }
  }
  return l;
}
/**
 * @param {number[]} nums
 * @param {number} threshold
 * @return {number}
 */
var smallestDivisor = function (nums, threshold) {
  let l = 1;
  let r = Math.max(...nums);
  while (l < r) {
    const mid = (l + r) >> 1;
    let s = 0;
    for (const x of nums) {
      s += Math.ceil(x / mid);
    }
    if (s <= threshold) {
      r = mid;
    } else {
      l = mid + 1;
    }
  }
  return l;
};
public class Solution {
  public int SmallestDivisor(int[] nums, int threshold) {
    int l = 1;
    int r = nums.Max();
    while (l < r) {
      int mid = (l + r) >> 1;
      int s = 0;
      foreach (int x in nums) {
        s += (x + mid - 1) / mid;
      }
      if (s <= threshold) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文