返回介绍

solution / 1200-1299 / 1223.Dice Roll Simulation / README_EN

发布于 2024-06-17 01:03:21 字数 10669 浏览 0 评论 0 收藏 0

1223. Dice Roll Simulation

中文文档

Description

A die simulator generates a random number from 1 to 6 for each roll. You introduced a constraint to the generator such that it cannot roll the number i more than rollMax[i] (1-indexed) consecutive times.

Given an array of integers rollMax and an integer n, return _the number of distinct sequences that can be obtained with exact _n_ rolls_. Since the answer may be too large, return it modulo 109 + 7.

Two sequences are considered different if at least one element differs from each other.

 

Example 1:

Input: n = 2, rollMax = [1,1,2,2,2,3]
Output: 34
Explanation: There will be 2 rolls of die, if there are no constraints on the die, there are 6 * 6 = 36 possible combinations. In this case, looking at rollMax array, the numbers 1 and 2 appear at most once consecutively, therefore sequences (1,1) and (2,2) cannot occur, so the final answer is 36-2 = 34.

Example 2:

Input: n = 2, rollMax = [1,1,1,1,1,1]
Output: 30

Example 3:

Input: n = 3, rollMax = [1,1,1,2,2,3]
Output: 181

 

Constraints:

  • 1 <= n <= 5000
  • rollMax.length == 6
  • 1 <= rollMax[i] <= 15

Solutions

Solution 1: Memoization Search

We can design a function $dfs(i, j, x)$ to represent the number of schemes starting from the $i$-th dice roll, with the current dice roll being $j$, and the number of consecutive times $j$ is rolled being $x$. The range of $j$ is $[1, 6]$, and the range of $x$ is $[1, rollMax[j - 1]]$. The answer is $dfs(0, 0, 0)$.

The calculation process of the function $dfs(i, j, x)$ is as follows:

  • If $i \ge n$, it means that $n$ dice have been rolled, return $1$.
  • Otherwise, we enumerate the number $k$ rolled next time. If $k \ne j$, we can directly roll $k$, and the number of consecutive times $j$ is rolled will be reset to $1$, so the number of schemes is $dfs(i + 1, k, 1)$. If $k = j$, we need to judge whether $x$ is less than $rollMax[j - 1]$. If it is less, we can continue to roll $j$, and the number of consecutive times $j$ is rolled will increase by $1$, so the number of schemes is $dfs(i + 1, j, x + 1)$. Finally, add all the scheme numbers to get the value of $dfs(i, j, x)$. Note that the answer may be very large, so we need to take the modulus of $10^9 + 7$.

During the process, we can use memoization search to avoid repeated calculations.

The time complexity is $O(n \times k^2 \times M)$, and the space complexity is $O(n \times k \times M)$. Here, $k$ is the range of dice points, and $M$ is the maximum number of times a certain point can be rolled consecutively.

class Solution:
  def dieSimulator(self, n: int, rollMax: List[int]) -> int:
    @cache
    def dfs(i, j, x):
      if i >= n:
        return 1
      ans = 0
      for k in range(1, 7):
        if k != j:
          ans += dfs(i + 1, k, 1)
        elif x < rollMax[j - 1]:
          ans += dfs(i + 1, j, x + 1)
      return ans % (10**9 + 7)

    return dfs(0, 0, 0)
class Solution {
  private Integer[][][] f;
  private int[] rollMax;

  public int dieSimulator(int n, int[] rollMax) {
    f = new Integer[n][7][16];
    this.rollMax = rollMax;
    return dfs(0, 0, 0);
  }

  private int dfs(int i, int j, int x) {
    if (i >= f.length) {
      return 1;
    }
    if (f[i][j][x] != null) {
      return f[i][j][x];
    }
    long ans = 0;
    for (int k = 1; k <= 6; ++k) {
      if (k != j) {
        ans += dfs(i + 1, k, 1);
      } else if (x < rollMax[j - 1]) {
        ans += dfs(i + 1, j, x + 1);
      }
    }
    ans %= 1000000007;
    return f[i][j][x] = (int) ans;
  }
}
class Solution {
public:
  int dieSimulator(int n, vector<int>& rollMax) {
    int f[n][7][16];
    memset(f, 0, sizeof f);
    const int mod = 1e9 + 7;
    function<int(int, int, int)> dfs = [&](int i, int j, int x) -> int {
      if (i >= n) {
        return 1;
      }
      if (f[i][j][x]) {
        return f[i][j][x];
      }
      long ans = 0;
      for (int k = 1; k <= 6; ++k) {
        if (k != j) {
          ans += dfs(i + 1, k, 1);
        } else if (x < rollMax[j - 1]) {
          ans += dfs(i + 1, j, x + 1);
        }
      }
      ans %= mod;
      return f[i][j][x] = ans;
    };
    return dfs(0, 0, 0);
  }
};
func dieSimulator(n int, rollMax []int) int {
  f := make([][7][16]int, n)
  const mod = 1e9 + 7
  var dfs func(i, j, x int) int
  dfs = func(i, j, x int) int {
    if i >= n {
      return 1
    }
    if f[i][j][x] != 0 {
      return f[i][j][x]
    }
    ans := 0
    for k := 1; k <= 6; k++ {
      if k != j {
        ans += dfs(i+1, k, 1)
      } else if x < rollMax[j-1] {
        ans += dfs(i+1, j, x+1)
      }
    }
    f[i][j][x] = ans % mod
    return f[i][j][x]
  }
  return dfs(0, 0, 0)
}

Solution 2: Dynamic Programming

We can change the memoization search in Solution 1 to dynamic programming.

Define $f[i][j][x]$ as the number of schemes for the first $i$ dice rolls, with the $i$-th dice roll being $j$, and the number of consecutive times $j$ is rolled being $x$. Initially, $f[1][j][1] = 1$, where $1 \leq j \leq 6$. The answer is:

$$ \sum_{j=1}^6 \sum_{x=1}^{rollMax[j-1]} f[n][j][x] $$

We enumerate the last dice roll as $j$, and the number of consecutive times $j$ is rolled as $x$. The current dice roll can be $1, 2, \cdots, 6$. If the current dice roll is $k$, there are two cases:

  • If $k \neq j$, we can directly roll $k$, and the number of consecutive times $j$ is rolled will be reset to $1$. Therefore, the number of schemes $f[i][k][1]$ will increase by $f[i-1][j][x]$.
  • If $k = j$, we need to judge whether $x+1$ is less than or equal to $rollMax[j-1]$. If it is less than or equal to, we can continue to roll $j$, and the number of consecutive times $j$ is rolled will increase by $1$. Therefore, the number of schemes $f[i][j][x+1]$ will increase by $f[i-1][j][x]$.

The final answer is the sum of all $f[n][j][x]$.

The time complexity is $O(n \times k^2 \times M)$, and the space complexity is $O(n \times k \times M)$. Here, $k$ is the range of dice points, and $M$ is the maximum number of times a certain point can be rolled consecutively.

class Solution:
  def dieSimulator(self, n: int, rollMax: List[int]) -> int:
    f = [[[0] * 16 for _ in range(7)] for _ in range(n + 1)]
    for j in range(1, 7):
      f[1][j][1] = 1
    for i in range(2, n + 1):
      for j in range(1, 7):
        for x in range(1, rollMax[j - 1] + 1):
          for k in range(1, 7):
            if k != j:
              f[i][k][1] += f[i - 1][j][x]
            elif x + 1 <= rollMax[j - 1]:
              f[i][j][x + 1] += f[i - 1][j][x]
    mod = 10**9 + 7
    ans = 0
    for j in range(1, 7):
      for x in range(1, rollMax[j - 1] + 1):
        ans = (ans + f[n][j][x]) % mod
    return ans
class Solution {
  public int dieSimulator(int n, int[] rollMax) {
    int[][][] f = new int[n + 1][7][16];
    for (int j = 1; j <= 6; ++j) {
      f[1][j][1] = 1;
    }
    final int mod = (int) 1e9 + 7;
    for (int i = 2; i <= n; ++i) {
      for (int j = 1; j <= 6; ++j) {
        for (int x = 1; x <= rollMax[j - 1]; ++x) {
          for (int k = 1; k <= 6; ++k) {
            if (k != j) {
              f[i][k][1] = (f[i][k][1] + f[i - 1][j][x]) % mod;
            } else if (x + 1 <= rollMax[j - 1]) {
              f[i][j][x + 1] = (f[i][j][x + 1] + f[i - 1][j][x]) % mod;
            }
          }
        }
      }
    }
    int ans = 0;
    for (int j = 1; j <= 6; ++j) {
      for (int x = 1; x <= rollMax[j - 1]; ++x) {
        ans = (ans + f[n][j][x]) % mod;
      }
    }
    return ans;
  }
}
class Solution {
public:
  int dieSimulator(int n, vector<int>& rollMax) {
    int f[n + 1][7][16];
    memset(f, 0, sizeof f);
    for (int j = 1; j <= 6; ++j) {
      f[1][j][1] = 1;
    }
    const int mod = 1e9 + 7;
    for (int i = 2; i <= n; ++i) {
      for (int j = 1; j <= 6; ++j) {
        for (int x = 1; x <= rollMax[j - 1]; ++x) {
          for (int k = 1; k <= 6; ++k) {
            if (k != j) {
              f[i][k][1] = (f[i][k][1] + f[i - 1][j][x]) % mod;
            } else if (x + 1 <= rollMax[j - 1]) {
              f[i][j][x + 1] = (f[i][j][x + 1] + f[i - 1][j][x]) % mod;
            }
          }
        }
      }
    }
    int ans = 0;
    for (int j = 1; j <= 6; ++j) {
      for (int x = 1; x <= rollMax[j - 1]; ++x) {
        ans = (ans + f[n][j][x]) % mod;
      }
    }
    return ans;
  }
};
func dieSimulator(n int, rollMax []int) (ans int) {
  f := make([][7][16]int, n+1)
  for j := 1; j <= 6; j++ {
    f[1][j][1] = 1
  }
  const mod = 1e9 + 7
  for i := 2; i <= n; i++ {
    for j := 1; j <= 6; j++ {
      for x := 1; x <= rollMax[j-1]; x++ {
        for k := 1; k <= 6; k++ {
          if k != j {
            f[i][k][1] = (f[i][k][1] + f[i-1][j][x]) % mod
          } else if x+1 <= rollMax[j-1] {
            f[i][j][x+1] = (f[i][j][x+1] + f[i-1][j][x]) % mod
          }
        }
      }
    }
  }
  for j := 1; j <= 6; j++ {
    for x := 1; x <= rollMax[j-1]; x++ {
      ans = (ans + f[n][j][x]) % mod
    }
  }
  return
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文