数学基础
- 线性代数
- 概率论与随机过程
- 数值计算
- 蒙特卡洛方法与 MCMC 采样
- 机器学习方法概论
统计学习
深度学习
- 深度学习简介
- 深度前馈网络
- 反向传播算法
- 正则化
- 深度学习中的最优化问题
- 卷积神经网络
- CNN:图像分类
- 循环神经网络 RNN
- Transformer
- 一、Transformer [2017]
- 二、Universal Transformer [2018]
- 三、Transformer-XL [2019]
- 四、GPT1 [2018]
- 五、GPT2 [2019]
- 六、GPT3 [2020]
- 七、OPT [2022]
- 八、BERT [2018]
- 九、XLNet [2019]
- 十、RoBERTa [2019]
- 十一、ERNIE 1.0 [2019]
- 十二、ERNIE 2.0 [2019]
- 十三、ERNIE 3.0 [2021]
- 十四、ERNIE-Huawei [2019]
- 十五、MT-DNN [2019]
- 十六、BART [2019]
- 十七、mBART [2020]
- 十八、SpanBERT [2019]
- 十九、ALBERT [2019]
- 二十、UniLM [2019]
- 二十一、MASS [2019]
- 二十二、MacBERT [2019]
- 二十三、Fine-Tuning Language Models from Human Preferences [2019]
- 二十四 Learning to summarize from human feedback [2020]
- 二十五、InstructGPT [2022]
- 二十六、T5 [2020]
- 二十七、mT5 [2020]
- 二十八、ExT5 [2021]
- 二十九、Muppet [2021]
- 三十、Self-Attention with Relative Position Representations [2018]
- 三十一、USE [2018]
- 三十二、Sentence-BERT [2019]
- 三十三、SimCSE [2021]
- 三十四、BERT-Flow [2020]
- 三十五、BERT-Whitening [2021]
- 三十六、Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings [2019]
- 三十七、CERT [2020]
- 三十八、DeCLUTR [2020]
- 三十九、CLEAR [2020]
- 四十、ConSERT [2021]
- 四十一、Sentence-T5 [2021]
- 四十二、ULMFiT [2018]
- 四十三、Scaling Laws for Neural Language Models [2020]
- 四十四、Chinchilla [2022]
- 四十七、GLM-130B [2022]
- 四十八、GPT-NeoX-20B [2022]
- 四十九、Bloom [2022]
- 五十、PaLM [2022] (粗读)
- 五十一、PaLM2 [2023](粗读)
- 五十二、Self-Instruct [2022]
- 句子向量
- 词向量
- 传统CTR 预估模型
- CTR 预估模型
- 一、DSSM [2013]
- 二、FNN [2016]
- 三、PNN [2016]
- 四、DeepCrossing [2016]
- 五、Wide 和 Deep [2016]
- 六、DCN [2017]
- 七、DeepFM [2017]
- 八、NFM [2017]
- 九、AFM [2017]
- 十、xDeepFM [2018]
- 十一、ESMM [2018]
- 十二、DIN [2017]
- 十三、DIEN [2019]
- 十四、DSIN [2019]
- 十五、DICM [2017]
- 十六、DeepMCP [2019]
- 十七、MIMN [2019]
- 十八、DMR [2020]
- 十九、MiNet [2020]
- 二十、DSTN [2019]
- 二十一、BST [2019]
- 二十二、SIM [2020]
- 二十三、ESM2 [2019]
- 二十四、MV-DNN [2015]
- 二十五、CAN [2020]
- 二十六、AutoInt [2018]
- 二十七、Fi-GNN [2019]
- 二十八、FwFM [2018]
- 二十九、FM2 [2021]
- 三十、FiBiNET [2019]
- 三十一、AutoFIS [2020]
- 三十三、AFN [2020]
- 三十四、FGCNN [2019]
- 三十五、AutoCross [2019]
- 三十六、InterHAt [2020]
- 三十七、xDeepInt [2023]
- 三十九、AutoDis [2021]
- 四十、MDE [2020]
- 四十一、NIS [2020]
- 四十二、AutoEmb [2020]
- 四十三、AutoDim [2021]
- 四十四、PEP [2021]
- 四十五、DeepLight [2021]
- 图的表达
- 一、DeepWalk [2014]
- 二、LINE [2015]
- 三、GraRep [2015]
- 四、TADW [2015]
- 五、DNGR [2016]
- 六、Node2Vec [2016]
- 七、WALKLETS [2016]
- 八、SDNE [2016]
- 九、CANE [2017]
- 十、EOE [2017]
- 十一、metapath2vec [2017]
- 十二、GraphGAN [2018]
- 十三、struc2vec [2017]
- 十四、GraphWave [2018]
- 十五、NetMF [2017]
- 十六、NetSMF [2019]
- 十七、PTE [2015]
- 十八、HNE [2015]
- 十九、AANE [2017]
- 二十、LANE [2017]
- 二十一、MVE [2017]
- 二十二、PMNE [2017]
- 二十三、ANRL [2018]
- 二十四、DANE [2018]
- 二十五、HERec [2018]
- 二十六、GATNE [2019]
- 二十七、MNE [2018]
- 二十八、MVN2VEC [2018]
- 二十九、SNE [2018]
- 三十、ProNE [2019]
- Graph Embedding 综述
- 图神经网络
- 一、GNN [2009]
- 二、Spectral Networks 和 Deep Locally Connected Networks [2013]
- 三、Fast Localized Spectral Filtering On Graph [2016]
- 四、GCN [2016]
- 五、神经图指纹 [2015]
- 六、GGS-NN [2016]
- 七、PATCHY-SAN [2016]
- 八、GraphSAGE [2017]
- 九、GAT [2017]
- 十、R-GCN [2017]
- 十一、 AGCN [2018]
- 十二、FastGCN [2018]
- 十三、PinSage [2018]
- 十四、GCMC [2017]
- 十五、JK-Net [2018]
- 十六、PPNP [2018]
- 十七、VRGCN [2017]
- 十八、ClusterGCN [2019]
- 十九、LDS-GNN [2019]
- 二十、DIAL-GNN [2019]
- 二十一、HAN [2019]
- 二十二、HetGNN [2019]
- 二十三、HGT [2020]
- 二十四、GPT-GNN [2020]
- 二十五、Geom-GCN [2020]
- 二十六、Graph Network [2018]
- 二十七、GIN [2019]
- 二十八、MPNN [2017]
- 二十九、UniMP [2020]
- 三十、Correct and Smooth [2020]
- 三十一、LGCN [2018]
- 三十二、DGCNN [2018]
- 三十三、AS-GCN
- 三十四、DGI [2018]
- 三十五、DIFFPOLL [2018]
- 三十六、DCNN [2016]
- 三十七、IN [2016]
- 图神经网络 2
- 图神经网络 3
- 推荐算法(传统方法)
- 一、Tapestry [1992]
- 二、GroupLens [1994]
- 三、ItemBased CF [2001]
- 四、Amazon I-2-I CF [2003]
- 五、Slope One Rating-Based CF [2005]
- 六、Bipartite Network Projection [2007]
- 七、Implicit Feedback CF [2008]
- 八、PMF [2008]
- 九、SVD++ [2008]
- 十、MMMF 扩展 [2008]
- 十一、OCCF [2008]
- 十二、BPR [2009]
- 十三、MF for RS [2009]
- 十四、 Netflix BellKor Solution [2009]
- 推荐算法(神经网络方法 1)
- 一、MIND [2019](用于召回)
- 二、DNN For YouTube [2016]
- 三、Recommending What Video to Watch Next [2019]
- 四、ESAM [2020]
- 五、Facebook Embedding Based Retrieval [2020](用于检索)
- 六、Airbnb Search Ranking [2018]
- 七、MOBIUS [2019](用于召回)
- 八、TDM [2018](用于检索)
- 九、DR [2020](用于检索)
- 十、JTM [2019](用于检索)
- 十一、Pinterest Recommender System [2017]
- 十二、DLRM [2019]
- 十三、Applying Deep Learning To Airbnb Search [2018]
- 十四、Improving Deep Learning For Airbnb Search [2020]
- 十五、HOP-Rec [2018]
- 十六、NCF [2017]
- 十七、NGCF [2019]
- 十八、LightGCN [2020]
- 十九、Sampling-Bias-Corrected Neural Modeling [2019](检索)
- 二十、EGES [2018](Matching 阶段)
- 二十一、SDM [2019](Matching 阶段)
- 二十二、COLD [2020 ] (Pre-Ranking 模型)
- 二十三、ComiRec [2020](https://www.wenjiangs.com/doc/0b4e1736-ac78)
- 二十四、EdgeRec [2020]
- 二十五、DPSR [2020](检索)
- 二十六、PDN [2021](mathcing)
- 二十七、时空周期兴趣学习网络ST-PIL [2021]
- 推荐算法之序列推荐
- 一、FPMC [2010]
- 二、GRU4Rec [2015]
- 三、HRM [2015]
- 四、DREAM [2016]
- 五、Improved GRU4Rec [2016]
- 六、NARM [2017]
- 七、HRNN [2017]
- 八、RRN [2017]
- 九、Caser [2018]
- 十、p-RNN [2016]
- 十一、GRU4Rec Top-k Gains [2018]
- 十二、SASRec [2018]
- 十三、RUM [2018]
- 十四、SHAN [2018]
- 十五、Phased LSTM [2016]
- 十六、Time-LSTM [2017]
- 十七、STAMP [2018]
- 十八、Latent Cross [2018]
- 十九、CSRM [2019]
- 二十、SR-GNN [2019]
- 二十一、GC-SAN [2019]
- 二十二、BERT4Rec [2019]
- 二十三、MCPRN [2019]
- 二十四、RepeatNet [2019]
- 二十五、LINet(2019)
- 二十六、NextItNet [2019]
- 二十七、GCE-GNN [2020]
- 二十八、LESSR [2020]
- 二十九、HyperRec [2020]
- 三十、DHCN [2021]
- 三十一、TiSASRec [2020]
- 推荐算法(综述)
- 多任务学习
- 系统架构
- 实践方法论
- 深度强化学习 1
- 自动代码生成
工具
- CRF
- lightgbm
- xgboost
- scikit-learn
- spark
- numpy
- matplotlib
- pandas
- huggingface_transformer
- 一、Tokenizer
- 二、Datasets
- 三、Model
- 四、Trainer
- 五、Evaluator
- 六、Pipeline
- 七、Accelerate
- 八、Autoclass
- 九、应用
- 十、Gradio
Scala
- 环境搭建
- 基础知识
- 函数
- 类
- 样例类和模式匹配
- 测试和注解
- 集合 collection(一)
- 集合collection(二)
- 集成 Java
- 并发
一、生成式半监督学习方法
生成式
generative methods
半监督学习方法:直接基于生成式模型的方法。生成式半监督学习方法假设所有数据(无论是否有标记),都是由同一个潜在的模型生成的。
- 该假设使得能够通过潜在模型的参数将未标记样本与学习目标联系起来。
- 未标记样本的标记可以视作模型的缺失参数,通常可以基于
EM
算法进行极大似然估计求解。
生成式半监督学习方法其实是一个算法框架,内部不同算法的主要区别在于生成式模型的假设:不同的假设将产生不同的方法。
1.1 生成式高斯混合半监督学习
给定样本 $ MathJax-Element-188 $ ,其真实类别标记为 $ MathJax-Element-68 $ 。
假设样本由高斯混合模型产生,且每个类别对应一个高斯混合成分。即数据样本是基于概率密度:
$ p(\mathbf{\vec x})=\sum_{k=1}^{K}\alpha_k p_k(\mathbf{\vec x};\vec \mu_k,\Sigma_k) $来产生的。其中:
- $ MathJax-Element-69 $ 是样本 $ MathJax-Element-188 $ 的第 $ MathJax-Element-537 $ 个高斯混合成分的概率。
- $ MathJax-Element-72 $ 为该高斯混合成分的参数。
- 混合系数 $ MathJax-Element-73 $ 。
令 $ MathJax-Element-74 $ 为模型 $ MathJax-Element-451 $ 对 $ MathJax-Element-188 $ 的预测标记, $ MathJax-Element-77 $ 表示样本 $ MathJax-Element-188 $ 隶属的高斯混合成分。
根据最大化后验概率,有:
$ f(\mathbf{\vec x})=\arg\max_{j\in \mathcal Y}p(y=j\mid \mathbf{\vec x}) $考虑到 $ MathJax-Element-79 $ , 则有:
$ f(\mathbf{\vec x})=\arg\max_{j\in \mathcal Y}\sum_{k=1}^{K}p(y=j,\Theta=k\mid \mathbf{\vec x}) $由于 $ MathJax-Element-80 $ , 则有:
$ f(\mathbf{\vec x})=\arg\max_{j\in \mathcal Y}\sum_{k=1}^{K}p(y=j\mid \Theta=k,\mathbf{\vec x})\cdot p(\Theta=k\mid \mathbf{\vec x}) $$ MathJax-Element-91 $ 为已知样本 $ MathJax-Element-188 $ ,则它由第 $ MathJax-Element-537 $ 个高斯混合成分生成的后验概率
$ p(\Theta=k\mid \mathbf{\vec x})=\frac{\alpha_k p_k(\mathbf{\vec x};\vec \mu_k,\Sigma_k)}{\sum_{k=1}^{K}\alpha_k p_k(\mathbf{\vec x};\vec \mu_k,\Sigma_k)} $$ MathJax-Element-89 $ 为已知 $ MathJax-Element-188 $ 由第 $ MathJax-Element-537 $ 个高斯混合成分生成,则其类别为 $ MathJax-Element-385 $ 的概率
在 $ MathJax-Element-88 $ 中, $ MathJax-Element-89 $ 需要知道样本的标记 $ MathJax-Element-368 $ ; 而 $ MathJax-Element-91 $ 并不需要样本的标记。因此有标记和无标记的数据均可利用。
因此通过引入大量的未标记数据,对 $ MathJax-Element-92 $ 的估计可以由于数据量的增长而更为准确,于是上式的整体估计可能会更准确。
给定标记样本集 $ MathJax-Element-124 $ ,和未标记样本集 $ MathJax-Element-236 $ ,其中 $ MathJax-Element-127 $ 。
假设所有样本独立同分布,且都是由同一个高斯混合模型 $ MathJax-Element-96 $ 生成的。
高斯混合模型的参数 $ MathJax-Element-97 $ 采用极大似然法来估计。
$ MathJax-Element-98 $ 的对数似然是:
$ \mathcal L=\sum_{(\mathbf{\vec x}_i,y_i)\in \mathbb D_l}\log\left(\sum_{k=1}^{K}\alpha_k p_k(\mathbf{\vec x}_i;\vec \mu_k,\Sigma_k)\cdot p(y_i\mid\Theta=k,\mathbf{\vec x}_i)\right) \\ +\sum_{\mathbf{\vec x}_i \in \mathbb D_u}\log\left(\sum_{k=1}^{K}\alpha_k p_k(\mathbf{\vec x}_i;\vec \mu_k,\Sigma_k)\right) $第一项对数项中,为联合概率 $ MathJax-Element-99 $ :
$ p(\mathbf{\vec x}_i,y_i)=p(y_i\mid \mathbf{\vec x}_i)p(\mathbf{\vec x}_i)=\sum_{k=1}^{K}\alpha_k p_k(\mathbf{\vec x}_i;\vec \mu_k,\Sigma_k)\cdot p(y_i\mid \Theta=k,\mathbf{\vec x}_i) $第二项对数项中,为概率 $ MathJax-Element-100 $ :
$ p(\mathbf{\vec x}_i)=\sum_{k=1}^{K}\alpha_k p_k(\mathbf{\vec x}_i;\vec \mu_k,\Sigma_k) $
高斯混合模型参数估计可以用
EM
算法求解。迭代更新步骤为:E
步:根据当前模型参数 $ MathJax-Element-101 $ 计算未标记样本 $ MathJax-Element-548 $ 属于各高斯混合成分的概率:
M
步:基于 $ MathJax-Element-103 $ 更新模型参数。令 $ MathJax-Element-104 $ 为第 $ MathJax-Element-537 $ 类的有标记样本数目,则:
以上过程不断迭代直至收敛,即可获得模型参数。
预测过程:根据式子:
$ f(\mathbf{\vec x})=\arg\max_{j\in \mathcal Y}\sum_{k=1}^{K}p(y=j\mid \Theta=k,\mathbf{\vec x})\cdot p(\Theta=k\mid \mathbf{\vec x})\\ p(\Theta=k\mid \mathbf{\vec x})=\frac{\alpha_k p_k(\mathbf{\vec x};\vec \mu_k,\Sigma_k)}{\sum_{k=1}^{K}\alpha_k p_k(\mathbf{\vec x};\vec \mu_k,\Sigma_k)} $来对样本 $ MathJax-Element-188 $ 进行分类。
1.2 性质
如果将上述过程中的高斯混合模型替换成其他模型,则可以推导出其他的生成式半监督学习方法。
生成式半监督学习方法优点:方法简单,易于实现。在有标记数据极少的情况下,往往比其他方法性能更好。
缺点:模型假设必须准确,即假设的生成式模型必须与真实数据分布吻合,否则利用未标记数据反倒会降低泛化性能。
在现实任务中往往很难事先做出准确的模型假设,除非拥有充分可靠的领域知识。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论