- Preface
- FAQ
- Guidelines for Contributing
- Contributors
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- 算法复习——排序
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Bitmap
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Add Two Numbers
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Palindrome Linked List
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Unique Binary Search Trees II
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Follow up
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Maximal Square
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- APAC 2016 Round D
- Problem A. Dynamic Grid
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume
- 術語表
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Search a 2D Matrix
Source
- leetcode: Search a 2D Matrix | LeetCode OJ
- lintcode: (28) Search a 2D Matrix
Problem
Write an efficient algorithm that searches for a value in an m x n matrix.
This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
Example
Consider the following matrix:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
Given target = 3
, return true
.
Challenge
O(log(n) + log(m)) time
题解 - 一次二分搜索 V.S. 两次二分搜索
- 一次二分搜索 - 由于矩阵按升序排列,因此可将二维矩阵转换为一维问题。对原始的二分搜索进行适当改变即可(求行和列)。时间复杂度为 O(log(mn))=O(log(m)+log(n))O(log(mn))=O(log(m)+log(n))O(log(mn))=O(log(m)+log(n))
- 两次二分搜索 - 先按行再按列进行搜索,即两次二分搜索。时间复杂度相同。
一次二分搜索
Python
class Solution:
def search_matrix(self, matrix, target):
# Find the first position of target
if not matrix or not matrix[0]:
return False
m, n = len(matrix), len(matrix[0])
st, ed = 0, m * n - 1
while st + 1 < ed:
mid = (st + ed) / 2
if matrix[mid / n][mid % n] == target:
return True
elif matrix[mid / n][mid % n] < target:
st = mid
else:
ed = mid
return matrix[st / n][st % n] == target or \
matrix[ed / n][ed % n] == target
C++
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if (matrix.empty() || matrix[0].empty()) return false;
int ROW = matrix.size(), COL = matrix[0].size();
int lb = -1, ub = ROW * COL;
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (matrix[mid / COL][mid % COL] < target) {
lb = mid;
} else {
if (matrix[mid / COL][mid % COL] == target) return true;
ub = mid;
}
}
return false;
}
};
Java
lower bound 二分模板。
public class Solution {
/**
* @param matrix, a list of lists of integers
* @param target, an integer
* @return a boolean, indicate whether matrix contains target
*/
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0] == null) {
return false;
}
int ROW = matrix.length, COL = matrix[0].length;
int lb = -1, ub = ROW * COL;
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (matrix[mid / COL][mid % COL] < target) {
lb = mid;
} else {
if (matrix[mid / COL][mid % COL] == target) {
return true;
}
ub = mid;
}
}
return false;
}
}
源码分析
仍然可以使用经典的二分搜索模板(lower bound),注意下标的赋值即可。
- 首先对输入做异常处理,不仅要考虑到 matrix 为 null,还要考虑到 matrix[0]的长度也为 0。
- 由于 lb 的变化处一定小于 target, 故在 else 中判断。
复杂度分析
二分搜索,O(logmn)O(\log mn)O(logmn).
两次二分法
Python
class Solution:
def search_matrix(self, matrix, target):
if not matrix or not matrix[0]:
return False
# first pos >= target
st, ed = 0, len(matrix) - 1
while st + 1 < ed:
mid = (st + ed) / 2
if matrix[mid][-1] == target:
st = mid
elif matrix[mid][-1] < target:
st = mid
else:
ed = mid
if matrix[st][-1] >= target:
row = matrix[st]
elif matrix[ed][-1] >= target:
row = matrix[ed]
else:
return False
# binary search in row
st, ed = 0, len(row) - 1
while st + 1 < ed:
mid = (st + ed) / 2
if row[mid] == target:
return True
elif row[mid] < target:
st = mid
else:
ed = mid
return row[st] == target or row[ed] == target
源码分析
- 先找到
first position
的行, 这一行的最后一个元素大于等于 target - 再在这一行中找 target
复杂度分析
二分搜索, O(logm+logn)O(\log m + \log n)O(logm+logn)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论