- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
Representing space
The grid that models the world has a fixed width and height. Squares are identified by their x- and y-coordinates. We use a simple type, Vector
(as seen in the exercises for the previous chapter ), to represent these coordinate pairs.
function Vector(x, y) { this.x = x; this.y = y; } Vector.prototype.plus = function(other) { return new Vector(this.x + other.x, this.y + other.y); };
Next, we need an object type that models the grid itself. A grid is part of a world, but we are making it a separate object (which will be a property of a world object) to keep the world object itself simple. The world should concern itself with world-related things, and the grid should concern itself with grid-related things.
To store a grid of values, we have several options. We can use an array of row arrays and use two property accesses to get to a specific square, like this:
var grid = [["top left", "top middle", "top right"], ["bottom left", "bottom middle", "bottom right"]]; console.log(grid[1][2]); // → bottom right
Or we can use a single array, with size width × height, and decide that the element at (x,y) is found at position x + (y × width) in the array.
var grid = ["top left", "top middle", "top right", "bottom left", "bottom middle", "bottom right"]; console.log(grid[2 + (1 * 3)]); // → bottom right
Since the actual access to this array will be wrapped in methods on the grid object type, it doesn’t matter to outside code which approach we take. I chose the second representation because it makes it much easier to create the array. When calling the Array
constructor with a single number as an argument, it creates a new empty array of the given length.
This code defines the Grid
object, with some basic methods:
function Grid(width, height) { this.space = new Array(width * height); this.width = width; this.height = height; } Grid.prototype.isInside = function(vector) { return vector.x >= 0 && vector.x < this.width && vector.y >= 0 && vector.y < this.height; }; Grid.prototype.get = function(vector) { return this.space[vector.x + this.width * vector.y]; }; Grid.prototype.set = function(vector, value) { this.space[vector.x + this.width * vector.y] = value; };
And here is a trivial test:
var grid = new Grid(5, 5); console.log(grid.get(new Vector(1, 1))); // → undefined grid.set(new Vector(1, 1), "X"); console.log(grid.get(new Vector(1, 1))); // → X
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论