返回介绍

Summary

发布于 2025-02-25 23:44:03 字数 817 浏览 0 评论 0 收藏 0

  • Using C, C++ or Fortran give essentially identcial performance
  • Of the JIT solutions:
    • Cython is the fastest but needs the extra work of type annotations
    • numba is almost as fast and simplest to use - just say jit(functiion)
    • numexpr is slightly slower and works best for small numpy expressions but is also very convenient
  • A pure numpy solution also perfroms reasonably and will be the shortest solutoin (a one-liner in this case)
  • The pure python approach is very slow, but serves as a useful template for converting to native langauge directly or via a JIT compiler
  • Note that the fsatest alternatives are approximately 1000 times faster than the pure python version for the test problem with n=1000 and p=3.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文