- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Review of functional programming
lambda map filter reduce fold concat flatmap aggregate groupby
from __future__ import division import os import sys import glob import matplotlib.pyplot as plt import numpy as np import pandas as pd %matplotlib inline %precision 4 plt.style.use('ggplot')
! pip install toolz
Requirement already satisfied (use --upgrade to upgrade): toolz in /Users/cliburn/anaconda/lib/python2.7/site-packages
from toolz import countby, groupby, accumulate, reduce, compose, partition from operator import add, itemgetter
Anonymous functions, map and filter
x = range(10) map(lambda x: x*x, filter(lambda x: x%2==0, x))
[0, 4, 16, 36, 64]
Reduce, accumulate and fold
reduce(add, x, 0)
45
Flatmap and function composition
flatmap = compose(concat, map)
from string import split s = ["hello world", "this is the end"] print list(map(split, s)) print list(flatmap(split, s))
[['hello', 'world'], ['this', 'is', 'the', 'end']] ['hello', 'world', 'this', 'is', 'the', 'end']
Working with key-value pairs
s = 'aabaabcdeda' a = [(_, 1) for _ in s] print a
[('a', 1), ('a', 1), ('b', 1), ('a', 1), ('a', 1), ('b', 1), ('c', 1), ('d', 1), ('e', 1), ('d', 1), ('a', 1)]
[item[0] for item in g.itervalues()]
[('a', 1), ('c', 1), ('b', 1), ('e', 1), ('d', 1)]
groupby(itemgetter(0), a, )
{'a': [('a', 1), ('a', 1), ('a', 1), ('a', 1), ('a', 1)], 'b': [('b', 1), ('b', 1)], 'c': [('c', 1)], 'd': [('d', 1), ('d', 1)], 'e': [('e', 1)]}
countby(itemgetter(0), a)
{'a': 5, 'b': 2, 'c': 1, 'd': 2, 'e': 1}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论