- Preface
- FAQ
- Guidelines for Contributing
- Contributors
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- 算法复习——排序
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Bitmap
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Add Two Numbers
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Palindrome Linked List
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Unique Binary Search Trees II
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Follow up
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Maximal Square
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- APAC 2016 Round D
- Problem A. Dynamic Grid
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume
- 術語表
Palindrome Linked List
Source
- leetcode: Palindrome Linked List | LeetCode OJ
- lintcode: Palindrome Linked List
- Function to check if a singly linked list is palindrome - GeeksforGeeks
Problem
Implement a function to check if a linked list is a palindrome.
Example
Given 1->2->1
, return true
Challenge
Could you do it in O(n) time and O(1) space?
题解 1 - 使用辅助栈
根据栈的特性(FILO),可以首先遍历链表并入栈(最后访问栈时则反过来了),随后再次遍历链表并比较当前节点和栈顶元素,若比较结果完全相同则为回文。 又根据回文的特性,实际上还可以只遍历链表前半部分节点,再用栈中的元素和后半部分元素进行比较,分链表节点个数为奇数或者偶数考虑即可。由于链表长度未知,因此可以考虑使用快慢指针求得。
Python
## Definition for singly-linked list
# class ListNode:
# def __init__(self, val):
# self.val = val
# self.next = None
class Solution:
# @param head, a ListNode
# @return a boolean
def is_palindrome(self, head):
if not head or not head.next:
return True
stack = []
slow, fast = head, head.next
while fast and fast.next:
stack.append(slow.val)
slow = slow.next
fast = fast.next.next
# for even numbers add mid
if fast:
stack.append(slow.val)
curt = slow.next
while curt:
if curt.val != stack.pop():
return False
curt = curt.next
return True
源码分析
注意, 在 python code 中, slow 和 fast pointer 分别指向 head 和 head.next。 这样指向的好处是:当 linked-list 有奇数个数字的时候, 最终位置,slow 会停在 mid 的位置, 而 fast 指向空。 当 linked-list 有偶数个 node 时, 最终位置,slow 和 slow.next 为中间的两个元素, fast 指向最后一个 node。所以 slow 的最终位置总是 mid 或者 mid 偏左一点的位置。这样的位置非常方便分割 linked-list,以及其他计算。推荐采用这种方法来寻找 linked-list 的 mid 位置。模版优势,请见 solution2。
Java
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
public class Solution {
/**
* @param head a ListNode
* @return a boolean
*/
public boolean isPalindrome(ListNode head) {
if (head == null || head.next == null) return true;
Deque<Integer> stack = new ArrayDeque<Integer>();
// find middle
ListNode slow = head, fast = head;
while (fast != null && fast.next != null) {
stack.push(slow.val);
slow = slow.next;
fast = fast.next.next;
}
// skip mid node if the number of ListNode is odd
if (fast != null) slow = slow.next;
ListNode rCurr = slow;
while (rCurr != null) {
if (rCurr.val != stack.pop()) return false;
rCurr = rCurr.next;
}
return true;
}
}
源码分析
注意区分好链表中个数为奇数还是偶数就好了,举几个简单例子辅助分析。
复杂度分析
使用了栈作为辅助空间,空间复杂度为 O(12n)O(\frac{1}{2}n)O(21n), 分别遍历链表的前半部分和后半部分,时间复杂度为 O(n)O(n)O(n).
题解 2 - 原地翻转
题解 1 的解法使用了辅助空间,在可以改变原来的链表的基础上,可使用原地翻转,思路为翻转前半部分,然后迭代比较。具体可分为以下四个步骤。
- 找中点。
- 翻转链表的后半部分。
- 逐个比较前后部分节点值。
- 链表复原,翻转后半部分链表。
Python
# class ListNode:
# def __init__(self, val):
# self.val = val
# self.next = None
class Solution:
def is_palindrome(self, head):
if not head or not head.next:
return True
slow, fast = head, head.next
while fast and fast.next:
fast = fast.next.next
slow = slow.next
mid = slow.next
# break
slow.next = None
rhead = self.reverse(mid)
while rhead:
if rhead.val != head.val:
return False
rhead = rhead.next
head = head.next
return True
def reverse(self, head):
dummy = ListNode(-1)
while head:
temp = head.next
head.next = dummy.next
dummy.next = head
head = temp
return dummy.next
源码分析
对比 Java code, 会发现,把 slow 和 fast pointer 放在 head 和 head.next 减少了对 odd 或者 even number 的判断。因为 slow 总是在 mid 的位置或者 mid 偏左的位置上, 所以把 mid assign 为 slow.next 总是对的。
Java
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
public class Solution {
/**
* @param head a ListNode
* @return a boolean
*/
public boolean isPalindrome(ListNode head) {
if (head == null || head.next == null) return true;
// find middle
ListNode slow = head, fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
// skip mid node if the number of ListNode is odd
if (fast != null) slow = slow.next;
// reverse right part of List
ListNode rHead = reverse(slow);
ListNode lCurr = head, rCurr = rHead;
while (rCurr != null) {
if (rCurr.val != lCurr.val) {
reverse(rHead);
return false;
}
lCurr = lCurr.next;
rCurr = rCurr.next;
}
// recover right part of List
reverse(rHead);
return true;
}
private ListNode reverse(ListNode head) {
ListNode prev = null;
while (head != null) {
ListNode after = head.next;
head.next = prev;
prev = head;
head = after;
}
return prev;
}
}
C++
class Solution {
public:
bool isPalindrome(ListNode* head) {
if (!head || !head->next) return true;
// find middle
ListNode* slow = head, *fast = head;
while (fast && fast->next) {
slow = slow->next;
fast = fast->next->next;
}
// skip mid node if the number of ListNode is odd
if (fast) slow = slow->next;
// reverse right part of List
ListNode* rHead = reverse(slow);
ListNode* lCurr = head, *rCurr = rHead;
while (rCurr) {
if (rCurr->val != lCurr->val) {
reverse(rHead);
return false;
}
lCurr = lCurr->next;
rCurr = rCurr->next;
}
// recover right part of List
reverse(rHead);
return true;
}
ListNode* reverse(ListNode* head) {
ListNode* prev = NULL;
while (head) {
ListNode* after = head->next;
head->next = prev;
prev = head;
head = after;
}
return prev;
}
}
源码分析
连续翻转两次右半部分链表即可复原原链表,将一些功能模块如翻转等尽量模块化。
复杂度分析
遍历链表若干次,时间复杂度近似为 O(n)O(n)O(n), 使用了几个临时遍历,空间复杂度为 O(1)O(1)O(1).
题解 3 - 递归( TLE )
递归需要两个重要条件,递归步的建立和递归终止条件。对于回文比较,理所当然应该递归比较第 i 个节点和第 n-i 个节点,那么问题来了,如何构建这个递归步?大致可以猜想出来递归的传入参数应该包含两个节点,用以指代第 i 个节点和第 n-i 个节点。返回参数应该包含布尔值(用以提前返回不是回文的情况) 和左半部分节点的下一个节点(用以和右半部分的节点进行比较)。由于需要返回两个值,在 Java 中需要使用自定义类进行封装,C/C++ 中则可以使用指针改变在 递归调用后 进行比较时节点的值。
Python
class Solution:
def is_palindrome(self, head):
result = [head, True]
self.helper(head, result)
return result[1]
def helper(self, right, result):
if right:
self.helper(right.next, result)
is_pal = result[0].val == right.val and result[1]
result = [result[0].next, is_pal]
Java
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Result {
ListNode lNode;
boolean isP;
Result(ListNode node, boolean isP) {
this.lNode = node;
this.isP = isP;
}
}
public class Solution {
/**
* @param head a ListNode
* @return a boolean
*/
public boolean isPalindrome(ListNode head) {
Result result = new Result(head, true);
helper(head, result);
return result.isP;
}
private void helper(ListNode right, Result result) {
if (right != null) {
helper(right.next, result);
boolean equal = (result.lNode.val == right.val);
result.isP = equal && result.isP;
result.lNode = result.lNode.next;
}
}
}
源码分析
核心代码为如何在递归中推进左半部分节点而对右半部分使用栈的方式逆向获取节点。左半部分的推进需要借助辅助数据结构 Result
.
复杂度分析
递归调用 n 层,时间复杂度近似为 O(n)O(n)O(n), 使用了几个临时变量,空间复杂度为 O(1)O(1)O(1).
Bonus - Fancy Python Solution
class Solution:
def is_palindrome(self, head):
nodes = []
while head:
nodes.append(head.val)
head = head.next
return nodes == nodes[::-1]
源码分析
将 linked-list 问题,转化成判断一个 array 是否为 palindrome 的问题。
复杂度分析
时间复杂度 O(n)O(n)O(n), 空间复杂度也是 O(n)O(n)O(n)
Reference
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论