- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
Error propagation
Not all problems can be prevented by the programmer, unfortunately. If your program communicates with the outside world in any way, there is a chance that the input it gets will be invalid or that other systems that it tries to talk to are broken or unreachable.
Simple programs, or programs that run only under your supervision, can afford to just give up when such a problem occurs. You’ll look into the problem and try again. “Real” applications, on the other hand, are expected to not simply crash. Sometimes the right thing to do is take the bad input in stride and continue running. In other cases, it is better to report to the user what went wrong and then give up. But in either situation, the program has to actively do something in response to the problem.
Say you have a function promptInteger
that asks the user for a whole number and returns it. What should it return if the user inputs orange?
One option is to make it return a special value. Common choices for such values are null
and undefined
.
function promptNumber(question) { var result = Number(prompt(question, "")); if (isNaN(result)) return null; else return result; } console.log(promptNumber("How many trees do you see?"));
This is a sound strategy. Now any code that calls promptNumber
must check whether an actual number was read and, failing that, must somehow recover—maybe by asking again or by filling in a default value. Or it could again return a special value to its caller to indicate that it failed to do what it was asked.
In many situations, mostly when errors are common and the caller should be explicitly taking them into account, returning a special value is a perfectly fine way to indicate an error. It does, however, have its downsides. First, what if the function can already return every possible kind of value? For such a function, it is hard to find a special value that can be distinguished from a valid result.
The second issue with returning special values is that it can lead to some very cluttered code. If a piece of code calls promptNumber
10 times, it has to check 10 times whether null
was returned. And if its response to finding null
is to simply return null
itself, the caller will in turn have to check for it, and so on.
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论