返回介绍

solution / 1200-1299 / 1273.Delete Tree Nodes / README_EN

发布于 2024-06-17 01:03:21 字数 4916 浏览 0 评论 0 收藏 0

1273. Delete Tree Nodes

中文文档

Description

A tree rooted at node 0 is given as follows:

  • The number of nodes is nodes;
  • The value of the ith node is value[i];
  • The parent of the ith node is parent[i].

Remove every subtree whose sum of values of nodes is zero.

Return _the number of the remaining nodes in the tree_.

 

Example 1:

Input: nodes = 7, parent = [-1,0,0,1,2,2,2], value = [1,-2,4,0,-2,-1,-1]
Output: 2

Example 2:

Input: nodes = 7, parent = [-1,0,0,1,2,2,2], value = [1,-2,4,0,-2,-1,-2]
Output: 6

 

Constraints:

  • 1 <= nodes <= 104
  • parent.length == nodes
  • 0 <= parent[i] <= nodes - 1
  • parent[0] == -1 which indicates that 0 is the root.
  • value.length == nodes
  • -105 <= value[i] <= 105
  • The given input is guaranteed to represent a valid tree.

Solutions

Solution 1: DFS

First, we convert the tree into a graph $g$, where $g[i]$ represents all the child nodes of node $i$.

Then we design a function $dfs(i)$, which represents the number of nodes and the sum of the weights in the subtree rooted at node $i$. The answer is $dfs(0)[1]$.

In this function, we recursively calculate the number of nodes and the sum of the weights in the subtree rooted at each child node $j$, and then accumulate these values. If the accumulated value is zero, we set the number of nodes in this subtree to zero. Finally, we return the number of nodes and the sum of the weights in the subtree rooted at node $i$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the number of nodes in the tree.

class Solution:
  def deleteTreeNodes(self, nodes: int, parent: List[int], value: List[int]) -> int:
    def dfs(i):
      s, m = value[i], 1
      for j in g[i]:
        t, n = dfs(j)
        s += t
        m += n
      if s == 0:
        m = 0
      return (s, m)

    g = defaultdict(list)
    for i in range(1, nodes):
      g[parent[i]].append(i)
    return dfs(0)[1]
class Solution {
  private List<Integer>[] g;
  private int[] value;

  public int deleteTreeNodes(int nodes, int[] parent, int[] value) {
    g = new List[nodes];
    Arrays.setAll(g, k -> new ArrayList<>());
    for (int i = 1; i < nodes; ++i) {
      g[parent[i]].add(i);
    }
    this.value = value;
    return dfs(0)[1];
  }

  private int[] dfs(int i) {
    int[] res = new int[] {value[i], 1};
    for (int j : g[i]) {
      int[] t = dfs(j);
      res[0] += t[0];
      res[1] += t[1];
    }
    if (res[0] == 0) {
      res[1] = 0;
    }
    return res;
  }
}
class Solution {
public:
  int deleteTreeNodes(int nodes, vector<int>& parent, vector<int>& value) {
    vector<vector<int>> g(nodes);
    for (int i = 1; i < nodes; ++i) {
      g[parent[i]].emplace_back(i);
    }
    function<pair<int, int>(int)> dfs = [&](int i) -> pair<int, int> {
      int s = value[i], m = 1;
      for (int j : g[i]) {
        auto [t, n] = dfs(j);
        s += t;
        m += n;
      }
      if (s == 0) {
        m = 0;
      }
      return pair<int, int>{s, m};
    };
    return dfs(0).second;
  }
};
func deleteTreeNodes(nodes int, parent []int, value []int) int {
  g := make([][]int, nodes)
  for i := 1; i < nodes; i++ {
    g[parent[i]] = append(g[parent[i]], i)
  }
  type pair struct{ s, n int }
  var dfs func(int) pair
  dfs = func(i int) pair {
    s, m := value[i], 1
    for _, j := range g[i] {
      t := dfs(j)
      s += t.s
      m += t.n
    }
    if s == 0 {
      m = 0
    }
    return pair{s, m}
  }
  return dfs(0).n
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文