- 架构 秒杀系统优化思路
- 架构 细聊分布式 ID 生成方法
- 互联网架构,如何进行容量设计?
- 线程数究竟设多少合理
- 单点系统架构的可用性与性能优化
- 一分钟了解负载均衡的一切
- lvs 为何不能完全替代 DNS 轮询
- 如何实施异构服务器的负载均衡及过载保护?
- 究竟啥才是互联网架构 高并发
- 究竟啥才是互联网架构 高可用
- 100 亿数据 1 万属性数据架构设计
- TCP 接入层的负载均衡、高可用、扩展性架构
- 架构师 数据库与缓存
- 数据库软件架构设计些什么
- 细聊冗余表数据一致性
- 缓存架构设计细节二三事
- 缓存与数据库一致性优化
- 主从 DB 与 cache 一致性优化
- DB 主从一致性架构优化 4 种方法
- 多库多事务降低数据不一致概率
- mysql 并行复制降低主从同步延时的思路与启示
- 互联网公司为啥不使用 mysql 分区表?
- 即使删了全库,保证半小时恢复
- 啥,又要为表增加一列属性?
- 这才是真正的表扩展方案
- 一分钟掌握数据库垂直拆分
- 数据库秒级平滑扩容架构方案
- 100 亿数据平滑数据迁移,不影响服务
- 58 到家数据库 30 条军规解读
- 再议 58 到家数据库军规
- 业界难题 跨库分页 的四种方案
- 架构师 服务化与微服务
- 互联网架构为什么要做服务化?
- 微服务架构多 微 才合适?
- 为什么说要搞定微服务架构,先搞定 RPC 框架?
- 微服务架构之 RPC-client 序列化细节
- RPC-client 异步收发核心细节
- 架构师 消息系统
- http 如何像 tcp 一样实时的收消息?
- 微信为什么不丢消息?
- 微信为啥不丢 离线消息?
- 群消息这么复杂,怎么能做到不丢不重?
- QQ 状态同步究竟是推还是拉?
- 微信多点登录与 QQ 消息漫游架构随想
- 消息 时序 与 一致性 为何这么难?
- 58 到家通用实时消息平台架构细节(Qcon2016)
- 微信为啥这么省流量?
- 应用层/安全层/传输层如何进行协议选型?
- 架构师 消息总线架构
- 10w 定时任务,如何高效触发超时
- 1 分钟实现 延迟消息 功能
- 消息总线能否实现消息必达?
- 架构师 搜索架构
- 深入浅出搜索架构引擎、方案与细节(上)
- 如何迅猛的实现搜索需求
- 百度如何能实时检索到 15 分钟前新生成的网页?
- 架构师 架构实践
- 好架构是进化来的,不是设计来的(58 架构演进)
- 58 同城推荐系统架构设计与实现
- 从 0 开始做互联网推荐-以 58 转转为例
- 从 0 开始做垂直 O2O 个性化推荐-以 58 到家美甲为例
- 58 到家入驻微信钱包的技术优化
- 创业公司快速搭建立体化监控之路(WOT2016)
- 巧用 CAS 解决数据一致性问题
- 百度咋做长文本去重
- 如何快速实现高并发短文检索
- 如何实现超高并发的无锁缓存?
- id 串行化 到底是怎么实现的?
- 从 IDC 到云端架构迁移之路(GITC2016)
- 架构师 一分钟系列
- 一张 神图 看懂单机/集群/热备/磁盘阵列(RAID)
- 一分钟学 awk 够用(产品经理都懂了)
- 十分钟学 perl 够用(客服 MM 都懂了)
- 一分钟 sed 入门(一分钟系列)
- 一分钟了解两阶段提交 2PC(运营 MM 也懂了)
- 30 秒懂 SQL 中的 join(2 幅图+30 秒)
- 连接池原来这么简单(一分钟系列)
- 一分钟实现分布式锁
- 这才是真正的分布式锁
- 一分钟一幅图 TCP/IP 搞定
- 一分钟理解负载 LoadAverage
- 1 分钟了解 Leader-Follower 线程模型
- 架构师 通用素质
- 心态:晋升的为什么不是你
- 你的收入取决于你的努力程度
- 老公,我穿这衣服好看吗 终于破解了
- 一分钟经理人
- 架构师到底该不该写代码
- 如何做一场 B 格满满的技术大会演讲
58 到家数据库 30 条军规解读
军规适用场景 :并发量大、数据量大的互联网业务
军规 :介绍内容
解读 :讲解原因,解读比军规更重要
一、基础规范
(1)必须使用 InnoDB 存储引擎
解读:支持事务、行级锁、并发性能更好、CPU 及内存缓存页优化使得资源利用率更高
(2)必须使用 UTF8 字符集
解读:万国码,无需转码,无乱码风险,节省空间
(3)数据表、数据字段必须加入中文注释
解读:N 年后谁 tm 知道这个 r1,r2,r3 字段是干嘛的
(4)禁止使用存储过程、视图、触发器、Event
解读:高并发大数据的互联网业务,架构设计思路是“解放数据库 CPU,将计算转移到服务层”,并发量大的情况下,这些功能很可能将数据库拖死,业务逻辑放到服务层具备更好的扩展性,能够轻易实现“增机器就加性能”。数据库擅长存储与索引,CPU 计算还是上移吧
(5)禁止存储大文件或者大照片
解读:为何要让数据库做它不擅长的事情?大文件和照片存储在文件系统,数据库里存 URI 多好
二、命名规范
(6)只允许使用内网域名,而不是 ip 连接数据库
(7)线上环境、开发环境、测试环境数据库内网域名遵循命名规范
业务名称:xxx
线上环境:dj.xxx.db
开发环境:dj.xxx.rdb
测试环境:dj.xxx.tdb
从库 在名称后加-s 标识, 备库 在名称后加-ss 标识
线上从库:dj.xxx-s.db
线上备库:dj.xxx-sss.db
(8)库名、表名、字段名:小写,下划线风格,不超过 32 个字符,必须见名知意,禁止拼音英文混用
(9)表名 t_xxx,非唯一索引名 idx_xxx,唯一索引名 uniq_xxx
三、表设计规范
(10)单实例表数目必须小于 500
(11)单表列数目必须小于 30
(12)表必须有主键,例如自增主键
解读:
a)主键递增,数据行写入可以提高插入性能,可以避免 page 分裂,减少表碎片提升空间和内存的使用
b)主键要选择较短的数据类型, Innodb 引擎普通索引都会保存主键的值,较短的数据类型可以有效的减少索引的磁盘空间,提高索引的缓存效率
c) 无主键的表删除,在 row 模式的主从架构,会导致备库夯住
(13)禁止使用外键,如果有外键完整性约束,需要应用程序控制
解读:外键会导致表与表之间耦合,update 与 delete 操作都会涉及相关联的表,十分影响 sql 的性能,甚至会造成死锁。高并发情况下容易造成数据库性能,大数据高并发业务场景数据库使用以性能优先
四、字段设计规范
(14)必须把字段定义为 NOT NULL 并且提供默认值
解读:
a)null 的列使索引/索引统计/值比较都更加复杂,对 MySQL 来说更难优化
b)null 这种类型 MySQL 内部需要进行特殊处理,增加数据库处理记录的复杂性;同等条件下,表中有较多空字段的时候,数据库的处理性能会降低很多
c)null 值需要更多的存储空,无论是表还是索引中每行中的 null 的列都需要额外的空间来标识
d)对 null 的处理时候,只能采用 is null 或 is not null,而不能采用=、in、<、<>、!=、not in 这些操作符号。如:where name!=’shenjian’,如果存在 name 为 null 值的记录,查询结果就不会包含 name 为 null 值的记录
(15)禁止使用 TEXT、BLOB 类型
解读:会浪费更多的磁盘和内存空间,非必要的大量的大字段查询会淘汰掉热数据,导致内存命中率急剧降低,影响数据库性能
(16)禁止使用小数存储货币
解读:使用整数吧,小数容易导致钱对不上
(17)必须使用 varchar(20) 存储手机号
解读:
a)涉及到区号或者国家代号,可能出现+-()
b)手机号会去做数学运算么?
c)varchar 可以支持模糊查询,例如:like“138%”
(18)禁止使用 ENUM,可使用 TINYINT 代替
解读:
a)增加新的 ENUM 值要做 DDL 操作
b)ENUM 的内部实际存储就是整数,你以为自己定义的是字符串?
五、索引设计规范
(19)单表索引建议控制在 5 个以内
(20)单索引字段数不允许超过 5 个
解读:字段超过 5 个时,实际已经起不到有效过滤数据的作用了
(21)禁止在更新十分频繁、区分度不高的属性上建立索引
解读:
a)更新会变更 B+树,更新频繁的字段建立索引会大大降低数据库性能
b)“性别”这种区分度不大的属性,建立索引是没有什么意义的,不能有效过滤数据,性能与全表扫描类似
(22)建立组合索引,必须把区分度高的字段放在前面
解读:能够更加有效的过滤数据
六、SQL 使用规范
(23)禁止使用 SELECT *,只获取必要的字段,需要显示说明列属性
解读:
a)读取不需要的列会增加 CPU、IO、NET 消耗
b)不能有效的利用覆盖索引
c)使用 SELECT *容易在增加或者删除字段后出现程序 BUG
(24)禁止使用 INSERT INTO t_xxx VALUES(xxx),必须显示指定插入的列属性
解读:容易在增加或者删除字段后出现程序 BUG
(25)禁止使用属性隐式转换
解读:SELECT uid FROM t_user WHERE phone=13812345678 会导致全表扫描,而不能命中 phone 索引,猜猜为什么?(这个线上问题不止出现过一次)
(26)禁止在 WHERE 条件的属性上使用函数或者表达式
解读:SELECT uid FROM t_user WHERE from_unixtime(day)>='2017-02-15' 会导致全表扫描
正确的写法是:SELECT uid FROM t_user WHERE day>= unix_timestamp('2017-02-15 00:00:00')
(27)禁止负向查询,以及%开头的模糊查询
解读:
a)负向查询条件:NOT、!=、<>、!<、!>、NOT IN、NOT LIKE 等,会导致全表扫描
b)%开头的模糊查询,会导致全表扫描
(28)禁止大表使用 JOIN 查询,禁止大表使用子查询
解读:会产生临时表,消耗较多内存与 CPU,极大影响数据库性能
(29)禁止使用 OR 条件,必须改为 IN 查询
解读:旧版本 Mysql 的 OR 查询是不能命中索引的,即使能命中索引,为何要让数据库耗费更多的 CPU 帮助实施查询优化呢?
(30)应用程序必须捕获 SQL 异常,并有相应处理
总结:大数据量高并发的互联网业务,极大影响数据库性能的都不让用,不让用哟。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论