- 序
- 译后感
- 原作者前言
- *args 和 **kwargs
- *args 的用法
- **kwargs 的用法
- 使用 *args 和 **kwargs 来调用函数
- 啥时候使用它们
- 调试 Debugging
- 生成器 Generators
- 可迭代对象(Iterable)
- 迭代器(Iterator)
- 迭代(Iteration)
- 生成器(Generators)
- Map,Filter 和 Reduce
- Map
- Filter
- Reduce
- set 数据结构
- 三元运算符
- 装饰器
- 一切皆对象
- 在函数中定义函数
- 从函数中返回函数
- 将函数作为参数传给另一个函数
- 你的第一个装饰器
- 使用场景
- 授权
- 日志
- 带参数的装饰器
- 在函数中嵌入装饰器
- 装饰器类
- Global和Return
- 多个return值
- 对象变动 Mutation
- __slots__魔法
- 虚拟环境 Virtualenv
- 容器 Collections
- 枚举 Enumerate
- 对象自省
- dir
- type和id
- inspect模块
- 推导式 Comprehension
- 列表推导式
- 字典推导式
- 集合推导式
- 异常
- 处理多个异常
- finally从句
- try/else从句
- lambda表达式
- 一行式
- For - Else
- else语句
- 使用C扩展
- CTypes
- SWIG
- Python/C API
- open函数
- 协程
- 函数缓存
- Python 3.2+
- Python 2+
- 上下文管理器
- 基于类的实现
- 处理异常
- 基于生成器的实现
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Map
Map
会将一个函数映射到一个输入列表的所有元素上。这是它的规范:
规范
map(function_to_apply, list_of_inputs)
大多数时候,我们要把列表中所有元素一个个地传递给一个函数,并收集输出。比方说:
items = [1, 2, 3, 4, 5]
squared = []
for i in items:
squared.append(i**2)
Map
可以让我们用一种简单而漂亮得多的方式来实现。就是这样:
items = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, items))
大多数时候,我们使用匿名函数(lambdas)来配合map
, 所以我在上面也是这么做的。 不仅用于一列表的输入, 我们甚至可以用于一列表的函数!
def multiply(x):
return (x*x)
def add(x):
return (x+x)
funcs = [multiply, add]
for i in range(5):
value = map(lambda x: x(i), funcs)
print(list(value))
# 译者注:上面print时,加了list转换,是为了python2/3的兼容性
# 在python2中map直接返回列表,但在python3中返回迭代器
# 因此为了兼容python3, 需要list转换一下
# Output:
# [0, 0]
# [1, 2]
# [4, 4]
# [9, 6]
# [16, 8]
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论