返回介绍

solution / 0600-0699 / 0655.Print Binary Tree / README

发布于 2024-06-17 01:03:35 字数 15180 浏览 0 评论 0 收藏 0

655. 输出二叉树

English Version

题目描述

给你一棵二叉树的根节点 root ,请你构造一个下标从 0 开始、大小为 m x n 的字符串矩阵 res ,用以表示树的 格式化布局 。构造此格式化布局矩阵需要遵循以下规则:

  • 树的 高度height ,矩阵的行数 m 应该等于 height + 1
  • 矩阵的列数 n 应该等于 2height+1 - 1
  • 根节点 需要放置在 顶行正中间 ,对应位置为 res[0][(n-1)/2]
  • 对于放置在矩阵中的每个节点,设对应位置为 res[r][c] ,将其左子节点放置在 res[r+1][c-2height-r-1] ,右子节点放置在 res[r+1][c+2height-r-1]
  • 继续这一过程,直到树中的所有节点都妥善放置。
  • 任意空单元格都应该包含空字符串 ""

返回构造得到的矩阵_ _res

 

 

示例 1:

输入:root = [1,2]
输出:
[["","1",""],
 ["2","",""]]

示例 2:

输入:root = [1,2,3,null,4]
输出:
[["","","","1","","",""],
 ["","2","","","","3",""],
 ["","","4","","","",""]]

 

提示:

  • 树中节点数在范围 [1, 210]
  • -99 <= Node.val <= 99
  • 树的深度在范围 [1, 10]

解法

方法一:两次 DFS

先通过 DFS 求二叉树的高度 $h$(高度从 0 开始),然后根据 $h$ 求得结果列表的行数 $m$ 和列数 $n$。

根据 $m$, $n$ 初始化结果列表 ans,然后 DFS 遍历二叉树,依次在每个位置填入二叉树节点值(字符串形式)即可。

时间复杂度 $O(h\times 2^h)$,空间复杂度 $O(h)$。其中 $h$ 是二叉树的高度。忽略结果返回值的空间消耗。

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def printTree(self, root: Optional[TreeNode]) -> List[List[str]]:
    def height(root):
      if root is None:
        return -1
      return 1 + max(height(root.left), height(root.right))

    def dfs(root, r, c):
      if root is None:
        return
      ans[r][c] = str(root.val)
      dfs(root.left, r + 1, c - 2 ** (h - r - 1))
      dfs(root.right, r + 1, c + 2 ** (h - r - 1))

    h = height(root)
    m, n = h + 1, 2 ** (h + 1) - 1
    ans = [[""] * n for _ in range(m)]
    dfs(root, 0, (n - 1) // 2)
    return ans
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public List<List<String>> printTree(TreeNode root) {
    int h = height(root);
    int m = h + 1, n = (1 << (h + 1)) - 1;
    String[][] res = new String[m][n];
    for (int i = 0; i < m; ++i) {
      Arrays.fill(res[i], "");
    }
    dfs(root, res, h, 0, (n - 1) / 2);
    List<List<String>> ans = new ArrayList<>();
    for (String[] t : res) {
      ans.add(Arrays.asList(t));
    }
    return ans;
  }

  private void dfs(TreeNode root, String[][] res, int h, int r, int c) {
    if (root == null) {
      return;
    }
    res[r][c] = String.valueOf(root.val);
    dfs(root.left, res, h, r + 1, c - (1 << (h - r - 1)));
    dfs(root.right, res, h, r + 1, c + (1 << (h - r - 1)));
  }

  private int height(TreeNode root) {
    if (root == null) {
      return -1;
    }
    return 1 + Math.max(height(root.left), height(root.right));
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  vector<vector<string>> printTree(TreeNode* root) {
    int h = height(root);
    int m = h + 1, n = (1 << (h + 1)) - 1;
    vector<vector<string>> ans(m, vector<string>(n, ""));
    dfs(root, ans, h, 0, (n - 1) / 2);
    return ans;
  }

  void dfs(TreeNode* root, vector<vector<string>>& ans, int h, int r, int c) {
    if (!root) return;
    ans[r][c] = to_string(root->val);
    dfs(root->left, ans, h, r + 1, c - pow(2, h - r - 1));
    dfs(root->right, ans, h, r + 1, c + pow(2, h - r - 1));
  }

  int height(TreeNode* root) {
    if (!root) return -1;
    return 1 + max(height(root->left), height(root->right));
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func printTree(root *TreeNode) [][]string {
  var height func(root *TreeNode) int
  height = func(root *TreeNode) int {
    if root == nil {
      return -1
    }
    return 1 + max(height(root.Left), height(root.Right))
  }
  h := height(root)
  m, n := h+1, (1<<(h+1))-1
  ans := make([][]string, m)
  for i := range ans {
    ans[i] = make([]string, n)
    for j := range ans[i] {
      ans[i][j] = ""
    }
  }
  var dfs func(root *TreeNode, r, c int)
  dfs = func(root *TreeNode, r, c int) {
    if root == nil {
      return
    }
    ans[r][c] = strconv.Itoa(root.Val)
    dfs(root.Left, r+1, c-int(math.Pow(float64(2), float64(h-r-1))))
    dfs(root.Right, r+1, c+int(math.Pow(float64(2), float64(h-r-1))))
  }

  dfs(root, 0, (n-1)/2)
  return ans
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function printTree(root: TreeNode | null): string[][] {
  const getHeight = (root: TreeNode | null, h: number) => {
    if (root == null) {
      return h - 1;
    }
    return Math.max(getHeight(root.left, h + 1), getHeight(root.right, h + 1));
  };

  const height = getHeight(root, 0);
  const m = height + 1;
  const n = 2 ** (height + 1) - 1;
  const res: string[][] = Array.from({ length: m }, () => new Array(n).fill(''));
  const dfs = (root: TreeNode | null, i: number, j: number) => {
    if (root === null) {
      return;
    }
    const { val, left, right } = root;
    res[i][j] = val + '';
    dfs(left, i + 1, j - 2 ** (height - i - 1));
    dfs(right, i + 1, j + 2 ** (height - i - 1));
  };
  dfs(root, 0, (n - 1) >>> 1);
  return res;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//   TreeNode {
//     val,
//     left: None,
//     right: None
//   }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
  fn get_height(root: &Option<Rc<RefCell<TreeNode>>>, h: u32) -> u32 {
    if let Some(node) = root {
      let node = node.borrow();
      return Self::get_height(&node.left, h + 1).max(Self::get_height(&node.right, h + 1));
    }
    h - 1
  }

  fn dfs(
    root: &Option<Rc<RefCell<TreeNode>>>,
    i: usize,
    j: usize,
    res: &mut Vec<Vec<String>>,
    height: u32
  ) {
    if root.is_none() {
      return;
    }
    let node = root.as_ref().unwrap().borrow();
    res[i][j] = node.val.to_string();
    Self::dfs(&node.left, i + 1, j - (2usize).pow(height - (i as u32) - 1), res, height);
    Self::dfs(&node.right, i + 1, j + (2usize).pow(height - (i as u32) - 1), res, height);
  }

  pub fn print_tree(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<String>> {
    let height = Self::get_height(&root, 0);
    let m = (height + 1) as usize;
    let n = (2usize).pow(height + 1) - 1;
    let mut res = vec![vec![String::new(); n]; m];
    Self::dfs(&root, 0, (n - 1) >> 1, &mut res, height);
    res
  }
}

方法二:两次 BFS

方法一中,我们是通过 DFS 来求二叉树的高度,我们也可以改成 BFS 的方式,逐层往下扩展,那么扩展的层数就是二叉树的高度。

同样,我们初始化结果列表 ans,然后 BFS 遍历二叉树,依次在每个位置填入二叉树节点值(字符串形式)即可。

时间复杂度 $O(h\times 2^h)$,空间复杂度 $O(h)$。其中 $h$ 是二叉树的高度。忽略结果返回值的空间消耗。

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def printTree(self, root: Optional[TreeNode]) -> List[List[str]]:
    def height(root):
      q = deque([root])
      h = -1
      while q:
        h += 1
        for _ in range(len(q)):
          root = q.popleft()
          if root.left:
            q.append(root.left)
          if root.right:
            q.append(root.right)
      return h

    h = height(root)
    m, n = h + 1, 2 ** (h + 1) - 1
    ans = [[""] * n for _ in range(m)]
    q = deque([(root, 0, (n - 1) // 2)])
    while q:
      node, r, c = q.popleft()
      ans[r][c] = str(node.val)
      if node.left:
        q.append((node.left, r + 1, c - 2 ** (h - r - 1)))
      if node.right:
        q.append((node.right, r + 1, c + 2 ** (h - r - 1)))
    return ans
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public List<List<String>> printTree(TreeNode root) {
    int h = height(root);
    int m = h + 1, n = (1 << (h + 1)) - 1;
    String[][] res = new String[m][n];
    for (int i = 0; i < m; ++i) {
      Arrays.fill(res[i], "");
    }
    Deque<Tuple> q = new ArrayDeque<>();
    q.offer(new Tuple(root, 0, (n - 1) / 2));
    while (!q.isEmpty()) {
      Tuple p = q.pollFirst();
      root = p.node;
      int r = p.r, c = p.c;
      res[r][c] = String.valueOf(root.val);
      if (root.left != null) {
        q.offer(new Tuple(root.left, r + 1, c - (1 << (h - r - 1))));
      }
      if (root.right != null) {
        q.offer(new Tuple(root.right, r + 1, c + (1 << (h - r - 1))));
      }
    }
    List<List<String>> ans = new ArrayList<>();
    for (String[] t : res) {
      ans.add(Arrays.asList(t));
    }
    return ans;
  }

  private int height(TreeNode root) {
    Deque<TreeNode> q = new ArrayDeque<>();
    q.offer(root);
    int h = -1;
    while (!q.isEmpty()) {
      ++h;
      for (int n = q.size(); n > 0; --n) {
        root = q.pollFirst();
        if (root.left != null) {
          q.offer(root.left);
        }
        if (root.right != null) {
          q.offer(root.right);
        }
      }
    }
    return h;
  }
}

class Tuple {
  TreeNode node;
  int r;
  int c;

  public Tuple(TreeNode node, int r, int c) {
    this.node = node;
    this.r = r;
    this.c = c;
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  vector<vector<string>> printTree(TreeNode* root) {
    int h = height(root);
    int m = h + 1, n = (1 << (h + 1)) - 1;
    vector<vector<string>> ans(m, vector<string>(n, ""));
    queue<tuple<TreeNode*, int, int>> q;
    q.push({root, 0, (n - 1) / 2});
    while (!q.empty()) {
      auto p = q.front();
      q.pop();
      root = get<0>(p);
      int r = get<1>(p), c = get<2>(p);
      ans[r][c] = to_string(root->val);
      if (root->left) q.push({root->left, r + 1, c - pow(2, h - r - 1)});
      if (root->right) q.push({root->right, r + 1, c + pow(2, h - r - 1)});
    }
    return ans;
  }

  int height(TreeNode* root) {
    int h = -1;
    queue<TreeNode*> q{{root}};
    while (!q.empty()) {
      ++h;
      for (int n = q.size(); n; --n) {
        root = q.front();
        q.pop();
        if (root->left) q.push(root->left);
        if (root->right) q.push(root->right);
      }
    }
    return h;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func printTree(root *TreeNode) [][]string {
  h := height(root)
  m, n := h+1, (1<<(h+1))-1
  ans := make([][]string, m)
  for i := range ans {
    ans[i] = make([]string, n)
    for j := range ans[i] {
      ans[i][j] = ""
    }
  }
  q := []tuple{tuple{root, 0, (n - 1) / 2}}
  for len(q) > 0 {
    p := q[0]
    q = q[1:]
    root := p.node
    r, c := p.r, p.c
    ans[r][c] = strconv.Itoa(root.Val)
    if root.Left != nil {
      q = append(q, tuple{root.Left, r + 1, c - int(math.Pow(float64(2), float64(h-r-1)))})
    }
    if root.Right != nil {
      q = append(q, tuple{root.Right, r + 1, c + int(math.Pow(float64(2), float64(h-r-1)))})
    }
  }
  return ans
}

func height(root *TreeNode) int {
  h := -1
  q := []*TreeNode{root}
  for len(q) > 0 {
    h++
    for n := len(q); n > 0; n-- {
      root := q[0]
      q = q[1:]
      if root.Left != nil {
        q = append(q, root.Left)
      }
      if root.Right != nil {
        q = append(q, root.Right)
      }
    }
  }
  return h
}

type tuple struct {
  node *TreeNode
  r  int
  c  int
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文