返回介绍

Linear Independence

发布于 2025-02-25 23:43:41 字数 1733 浏览 0 评论 0 收藏 0

A collection of vectors \(v_1,...,v_n\) is said to be linearly independent if

\[c_1v_1 + \cdots c_nv_n = 0\] \[\iff\] \[c_1=\cdots=c_n=0\]

In other words, any linear combination of the vectors that results in a zero vector is trivial.

Another interpretation of this is that no vector in the set may be expressed as a linear combination of the others. In this sense, linear independence is an expression of non-redundancy in a set of vectors.

Fact: Any linearly independent set of \(n\) vectors spans an \(n\)-dimensional space. (I.e. the collection of all possible linear combinations is \(\mathbb{R}^n\).) Such a set of vectors is said to be a basis of \(\mathbb{R}^n\). Another term for basis is minimal spanning set.

A LOT!!

  • If \(A\) is an \(m\times n\) matrix and \(m>n\), if all \(m\) rows are linearly independent, then the system is overdetermined and inconsistent. The system cannot be solved exactly. This is the usual case in data analysis, and why least squares is so important.
  • If \(A\) is an \(m\times n\) matrix and \(m<n\), if all \(m\) rows are linearly independent, then the system is underdetermined and there are infinite solutions.
  • If \(A\) is an \(m\times n\) matrix and some of its rows are linearly dependent, then the system is reducible. We can get rid of some equations.
  • If \(A\) is a square matrix and its rows are linearly independent, the system has a unique solution. (\(A\) is invertible.)

Linear algebra has a whole lot more to tell us about linear systems, so we’ll review a few basics.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文