- 概览
- 安装
- 教程
- 算法接口文档
- 简易高效的并行接口
- APIS
- FREQUENTLY ASKED QUESTIONS
- EVOKIT
- 其他
- parl.algorithms.paddle.policy_gradient
- parl.algorithms.paddle.dqn
- parl.algorithms.paddle.ddpg
- parl.algorithms.paddle.ddqn
- parl.algorithms.paddle.oac
- parl.algorithms.paddle.a2c
- parl.algorithms.paddle.qmix
- parl.algorithms.paddle.td3
- parl.algorithms.paddle.sac
- parl.algorithms.paddle.ppo
- parl.algorithms.paddle.maddpg
- parl.core.paddle.model
- parl.core.paddle.algorithm
- parl.remote.remote_decorator
- parl.core.paddle.agent
- parl.remote.client
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
模型参数管理
该教程的目标:
学会保存和恢复目标参数
场景1:
在训练过程中,我们有时候需要把训练好的模型参数保存到本地,用于后续的部署或者评估。当用户构建好agent之后,可以直接通过agent的相关接口来完成参数的存储。
示例:
agent = AtariAgent() # save the parameters of agent to ./model_dir agent.save('./model_dir') # restore the parameters from ./model_dir to agent agent.restore('./model_dir')
场景2:
并行训练过程中,经常需要把最新的模型参数同步到另一台服务器上,这时候,需要把模型参数拿到内存中,然后再赋值给另一台机器上的agent(actor)。
#--------------Agent--------------- weights = agent.get_weights() #--------------Remote Actor-------------- actor.set_weights(weights)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论