- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
Saving
To explain the implementation of the save link, I must first tell you about data URLs. A data URL is a URL with data: as its protocol. Unlike regular http: and https: URLs, data URLs don’t point at a resource but rather contain the entire resource in them. This is a data URL containing a simple HTML document:
data:text/html,<h1 style="color:red">Hello!</h1>
Data URLs are useful for various tasks, such as including small images directly in a style sheet file. They also allow us to link to files that we created on the client side, in the browser, without first moving them to some server.
Canvas elements have a convenient method, called toDataURL
, which will return a data URL that contains the picture on the canvas as an image file. We don’t want to update our save link every time the picture is changed, however. For big pictures, that involves moving quite a lot of data into a link and would be noticeably slow. Instead, we rig the link to update its href
attribute whenever it is focused with the keyboard or the mouse is moved over it.
controls.save = function(cx) { var link = elt("a", {href: "/"}, "Save"); function update() { try { link.href = cx.canvas.toDataURL(); } catch (e) { if (e instanceof SecurityError) link.href = "javascript:alert(" + JSON.stringify("Can't save: " + e.toString()) + ")"; else throw e; } } link.addEventListener("mouseover", update); link.addEventListener("focus", update); return link; };
Thus, the link just quietly sits there, pointing at the wrong thing, but when the user approaches it, it magically updates itself to point at the current picture.
If you load a big image, some browsers will choke on the giant data URLs that this produces. For small pictures, this approach works without problem.
But here we once again run into the subtleties of browser sandboxing. When an image is loaded from a URL on another domain, if the server’s response doesn’t include a header that tells the browser the resource may be used from other domains (see Chapter 17 ), then the canvas will contain information that the user may look at but that the script may not.
We may have requested a picture that contains private information (for example, a graph showing the user’s bank account balance) using the user’s session. If scripts could get information out of that picture, they could snoop on the user in undesirable ways.
To prevent these kinds of information leaks, browsers will mark a canvas as tainted when an image that the script may not see is drawn onto it. Pixel data, including data URLs, may not be extracted from a tainted canvas. You can write to it, but you can no longer read it.
This is why we need the try/catch
statement in the update
function for the save link. When the canvas has become tainted, calling toDataURL
will raise an exception that is an instance of SecurityError
. When that happens, we set the link to point at yet another kind of URL, using the javascript: protocol. Such links simply execute the script given after the colon when they are followed so that the link will show an alert
window informing the user of the problem when it is clicked.
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论