返回介绍

Spark

发布于 2025-02-25 23:44:05 字数 1723 浏览 0 评论 0 收藏 0

Spark provides a much richer set of programming constructs and libraries that greatly simplify concurrent programming. In addition, because Spark data can be persistent over a session (unliike MapReduce which reads/writes data at each step in the job chain), it can be much faster for iteratvie programs and also enables interactive concurrent programming. See official documenttion for details, including setting up on Amazon . This article on how to set up Spark on EMR may also be helpful.

Very conceniently for learning, Spark provides an REPL shell where you can interactively type and run Spark programs. For example, this will open a Spark shell as an IPython Notebook (if spark is installed and pyspark is on your path):

IPYTHON_OPTS="notebook" pyspark

To whet your appetite, here is the stadnalone Spark version for the word count program.

%%file spark_count.py

from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("Word Count")
sc = SparkContext(conf = conf)

rdd = sc.textFile("<path_to_books>")
words = rdd.flatMap(lambda x: x.split())
result = words.countByValue()
Writing spark_count.py

And this is run by typing on the command line

bin/spark-submit spark_count.py

Of course, spark-submit has many options that can be provided to configure the job.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文