数学基础
- 线性代数
- 概率论与随机过程
- 数值计算
- 蒙特卡洛方法与 MCMC 采样
- 机器学习方法概论
统计学习
深度学习
- 深度学习简介
- 深度前馈网络
- 反向传播算法
- 正则化
- 深度学习中的最优化问题
- 卷积神经网络
- CNN:图像分类
- 循环神经网络 RNN
- Transformer
- 一、Transformer [2017]
- 二、Universal Transformer [2018]
- 三、Transformer-XL [2019]
- 四、GPT1 [2018]
- 五、GPT2 [2019]
- 六、GPT3 [2020]
- 七、OPT [2022]
- 八、BERT [2018]
- 九、XLNet [2019]
- 十、RoBERTa [2019]
- 十一、ERNIE 1.0 [2019]
- 十二、ERNIE 2.0 [2019]
- 十三、ERNIE 3.0 [2021]
- 十四、ERNIE-Huawei [2019]
- 十五、MT-DNN [2019]
- 十六、BART [2019]
- 十七、mBART [2020]
- 十八、SpanBERT [2019]
- 十九、ALBERT [2019]
- 二十、UniLM [2019]
- 二十一、MASS [2019]
- 二十二、MacBERT [2019]
- 二十三、Fine-Tuning Language Models from Human Preferences [2019]
- 二十四 Learning to summarize from human feedback [2020]
- 二十五、InstructGPT [2022]
- 二十六、T5 [2020]
- 二十七、mT5 [2020]
- 二十八、ExT5 [2021]
- 二十九、Muppet [2021]
- 三十、Self-Attention with Relative Position Representations [2018]
- 三十一、USE [2018]
- 三十二、Sentence-BERT [2019]
- 三十三、SimCSE [2021]
- 三十四、BERT-Flow [2020]
- 三十五、BERT-Whitening [2021]
- 三十六、Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings [2019]
- 三十七、CERT [2020]
- 三十八、DeCLUTR [2020]
- 三十九、CLEAR [2020]
- 四十、ConSERT [2021]
- 四十一、Sentence-T5 [2021]
- 四十二、ULMFiT [2018]
- 四十三、Scaling Laws for Neural Language Models [2020]
- 四十四、Chinchilla [2022]
- 四十七、GLM-130B [2022]
- 四十八、GPT-NeoX-20B [2022]
- 四十九、Bloom [2022]
- 五十、PaLM [2022] (粗读)
- 五十一、PaLM2 [2023](粗读)
- 五十二、Self-Instruct [2022]
- 句子向量
- 词向量
- 传统CTR 预估模型
- CTR 预估模型
- 一、DSSM [2013]
- 二、FNN [2016]
- 三、PNN [2016]
- 四、DeepCrossing [2016]
- 五、Wide 和 Deep [2016]
- 六、DCN [2017]
- 七、DeepFM [2017]
- 八、NFM [2017]
- 九、AFM [2017]
- 十、xDeepFM [2018]
- 十一、ESMM [2018]
- 十二、DIN [2017]
- 十三、DIEN [2019]
- 十四、DSIN [2019]
- 十五、DICM [2017]
- 十六、DeepMCP [2019]
- 十七、MIMN [2019]
- 十八、DMR [2020]
- 十九、MiNet [2020]
- 二十、DSTN [2019]
- 二十一、BST [2019]
- 二十二、SIM [2020]
- 二十三、ESM2 [2019]
- 二十四、MV-DNN [2015]
- 二十五、CAN [2020]
- 二十六、AutoInt [2018]
- 二十七、Fi-GNN [2019]
- 二十八、FwFM [2018]
- 二十九、FM2 [2021]
- 三十、FiBiNET [2019]
- 三十一、AutoFIS [2020]
- 三十三、AFN [2020]
- 三十四、FGCNN [2019]
- 三十五、AutoCross [2019]
- 三十六、InterHAt [2020]
- 三十七、xDeepInt [2023]
- 三十九、AutoDis [2021]
- 四十、MDE [2020]
- 四十一、NIS [2020]
- 四十二、AutoEmb [2020]
- 四十三、AutoDim [2021]
- 四十四、PEP [2021]
- 四十五、DeepLight [2021]
- 图的表达
- 一、DeepWalk [2014]
- 二、LINE [2015]
- 三、GraRep [2015]
- 四、TADW [2015]
- 五、DNGR [2016]
- 六、Node2Vec [2016]
- 七、WALKLETS [2016]
- 八、SDNE [2016]
- 九、CANE [2017]
- 十、EOE [2017]
- 十一、metapath2vec [2017]
- 十二、GraphGAN [2018]
- 十三、struc2vec [2017]
- 十四、GraphWave [2018]
- 十五、NetMF [2017]
- 十六、NetSMF [2019]
- 十七、PTE [2015]
- 十八、HNE [2015]
- 十九、AANE [2017]
- 二十、LANE [2017]
- 二十一、MVE [2017]
- 二十二、PMNE [2017]
- 二十三、ANRL [2018]
- 二十四、DANE [2018]
- 二十五、HERec [2018]
- 二十六、GATNE [2019]
- 二十七、MNE [2018]
- 二十八、MVN2VEC [2018]
- 二十九、SNE [2018]
- 三十、ProNE [2019]
- Graph Embedding 综述
- 图神经网络
- 一、GNN [2009]
- 二、Spectral Networks 和 Deep Locally Connected Networks [2013]
- 三、Fast Localized Spectral Filtering On Graph [2016]
- 四、GCN [2016]
- 五、神经图指纹 [2015]
- 六、GGS-NN [2016]
- 七、PATCHY-SAN [2016]
- 八、GraphSAGE [2017]
- 九、GAT [2017]
- 十、R-GCN [2017]
- 十一、 AGCN [2018]
- 十二、FastGCN [2018]
- 十三、PinSage [2018]
- 十四、GCMC [2017]
- 十五、JK-Net [2018]
- 十六、PPNP [2018]
- 十七、VRGCN [2017]
- 十八、ClusterGCN [2019]
- 十九、LDS-GNN [2019]
- 二十、DIAL-GNN [2019]
- 二十一、HAN [2019]
- 二十二、HetGNN [2019]
- 二十三、HGT [2020]
- 二十四、GPT-GNN [2020]
- 二十五、Geom-GCN [2020]
- 二十六、Graph Network [2018]
- 二十七、GIN [2019]
- 二十八、MPNN [2017]
- 二十九、UniMP [2020]
- 三十、Correct and Smooth [2020]
- 三十一、LGCN [2018]
- 三十二、DGCNN [2018]
- 三十三、AS-GCN
- 三十四、DGI [2018]
- 三十五、DIFFPOLL [2018]
- 三十六、DCNN [2016]
- 三十七、IN [2016]
- 图神经网络 2
- 图神经网络 3
- 推荐算法(传统方法)
- 一、Tapestry [1992]
- 二、GroupLens [1994]
- 三、ItemBased CF [2001]
- 四、Amazon I-2-I CF [2003]
- 五、Slope One Rating-Based CF [2005]
- 六、Bipartite Network Projection [2007]
- 七、Implicit Feedback CF [2008]
- 八、PMF [2008]
- 九、SVD++ [2008]
- 十、MMMF 扩展 [2008]
- 十一、OCCF [2008]
- 十二、BPR [2009]
- 十三、MF for RS [2009]
- 十四、 Netflix BellKor Solution [2009]
- 推荐算法(神经网络方法 1)
- 一、MIND [2019](用于召回)
- 二、DNN For YouTube [2016]
- 三、Recommending What Video to Watch Next [2019]
- 四、ESAM [2020]
- 五、Facebook Embedding Based Retrieval [2020](用于检索)
- 六、Airbnb Search Ranking [2018]
- 七、MOBIUS [2019](用于召回)
- 八、TDM [2018](用于检索)
- 九、DR [2020](用于检索)
- 十、JTM [2019](用于检索)
- 十一、Pinterest Recommender System [2017]
- 十二、DLRM [2019]
- 十三、Applying Deep Learning To Airbnb Search [2018]
- 十四、Improving Deep Learning For Airbnb Search [2020]
- 十五、HOP-Rec [2018]
- 十六、NCF [2017]
- 十七、NGCF [2019]
- 十八、LightGCN [2020]
- 十九、Sampling-Bias-Corrected Neural Modeling [2019](检索)
- 二十、EGES [2018](Matching 阶段)
- 二十一、SDM [2019](Matching 阶段)
- 二十二、COLD [2020 ] (Pre-Ranking 模型)
- 二十三、ComiRec [2020](https://www.wenjiangs.com/doc/0b4e1736-ac78)
- 二十四、EdgeRec [2020]
- 二十五、DPSR [2020](检索)
- 二十六、PDN [2021](mathcing)
- 二十七、时空周期兴趣学习网络ST-PIL [2021]
- 推荐算法之序列推荐
- 一、FPMC [2010]
- 二、GRU4Rec [2015]
- 三、HRM [2015]
- 四、DREAM [2016]
- 五、Improved GRU4Rec [2016]
- 六、NARM [2017]
- 七、HRNN [2017]
- 八、RRN [2017]
- 九、Caser [2018]
- 十、p-RNN [2016]
- 十一、GRU4Rec Top-k Gains [2018]
- 十二、SASRec [2018]
- 十三、RUM [2018]
- 十四、SHAN [2018]
- 十五、Phased LSTM [2016]
- 十六、Time-LSTM [2017]
- 十七、STAMP [2018]
- 十八、Latent Cross [2018]
- 十九、CSRM [2019]
- 二十、SR-GNN [2019]
- 二十一、GC-SAN [2019]
- 二十二、BERT4Rec [2019]
- 二十三、MCPRN [2019]
- 二十四、RepeatNet [2019]
- 二十五、LINet(2019)
- 二十六、NextItNet [2019]
- 二十七、GCE-GNN [2020]
- 二十八、LESSR [2020]
- 二十九、HyperRec [2020]
- 三十、DHCN [2021]
- 三十一、TiSASRec [2020]
- 推荐算法(综述)
- 多任务学习
- 系统架构
- 实践方法论
- 深度强化学习 1
- 自动代码生成
工具
- CRF
- lightgbm
- xgboost
- scikit-learn
- spark
- numpy
- matplotlib
- pandas
- huggingface_transformer
- 一、Tokenizer
- 二、Datasets
- 三、Model
- 四、Trainer
- 五、Evaluator
- 六、Pipeline
- 七、Accelerate
- 八、Autoclass
- 九、应用
- 十、Gradio
Scala
- 环境搭建
- 基础知识
- 函数
- 类
- 样例类和模式匹配
- 测试和注解
- 集合 collection(一)
- 集合collection(二)
- 集成 Java
- 并发
三、矩阵运算
给定两个矩阵 $ MathJax-Element-84 $ ,定义:
阿达马积
$ \mathbf A \circ \mathbf B =\begin{bmatrix} a_{1,1}b_{1,1}&a_{1,2}b_{1,2}&\cdots&a_{1,n}b_{1,n}\\ a_{2,1}b_{2,1}&a_{2,2}b_{2,2}&\cdots&a_{2,n}b_{2,n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m,1}b_{m,1}&a_{m,2}b_{m,2}&\cdots&a_{m,n}b_{m,n}\end{bmatrix} $Hadamard product
(又称作逐元素积):克罗内积
$ \mathbf A \otimes \mathbf B =\begin{bmatrix}a_{1,1}\mathbf B&a_{1,2}\mathbf B&\cdots&a_{1,n}\mathbf B\\ a_{2,1}\mathbf B&a_{2,2}\mathbf B&\cdots&a_{2,n}\mathbf B\\ \vdots&\vdots&\ddots&\vdots\\ a_{m,1}\mathbf B&a_{m,2}\mathbf B&\cdots&a_{m,n}\mathbf B \end{bmatrix} $Kronnecker product
:
设 $ MathJax-Element-85 $ 为 $ MathJax-Element-119 $ 阶向量, $ MathJax-Element-87 $ 为 $ MathJax-Element-119 $ 阶方阵,则有:
$ \frac{\partial(\mathbf {\vec a}^{T}\mathbf {\vec x}) }{\partial \mathbf {\vec x} }=\frac{\partial(\mathbf {\vec x}^{T}\mathbf {\vec a}) }{\partial \mathbf {\vec x} } =\mathbf {\vec a} $ $ \frac{\partial(\mathbf {\vec a}^{T}\mathbf X\mathbf {\vec b}) }{\partial \mathbf X }=\mathbf {\vec a}\mathbf {\vec b}^{T}=\mathbf {\vec a}\otimes\mathbf {\vec b}\in \mathbb R^{n\times n} $ $ \frac{\partial(\mathbf {\vec a}^{T}\mathbf X^{T}\mathbf {\vec b}) }{\partial \mathbf X }=\mathbf {\vec b}\mathbf {\vec a}^{T}=\mathbf {\vec b}\otimes\mathbf {\vec a}\in \mathbb R^{n\times n} $ $ \frac{\partial(\mathbf {\vec a}^{T}\mathbf X\mathbf {\vec a}) }{\partial \mathbf X }=\frac{\partial(\mathbf {\vec a}^{T}\mathbf X^{T}\mathbf {\vec a}) }{\partial \mathbf X }=\mathbf {\vec a}\otimes\mathbf {\vec a} $ $ \frac{\partial(\mathbf {\vec a}^{T}\mathbf X^{T}\mathbf X\mathbf {\vec b}) }{\partial \mathbf X }=\mathbf X(\mathbf {\vec a}\otimes\mathbf {\vec b}+\mathbf {\vec b}\otimes\mathbf {\vec a}) $ $ \frac{\partial[(\mathbf A\mathbf {\vec x}+\mathbf {\vec a})^{T}\mathbf C(\mathbf B\mathbf {\vec x}+\mathbf {\vec b})]}{\partial \mathbf {\vec x}}=\mathbf A^{T}\mathbf C(\mathbf B\mathbf {\vec x}+\mathbf {\vec b})+\mathbf B^{T}\mathbf C(\mathbf A\mathbf {\vec x}+\mathbf {\vec a}) $ $ \frac{\partial (\mathbf {\vec x}^{T}\mathbf A \mathbf {\vec x})}{\partial \mathbf {\vec x}}=(\mathbf A+\mathbf A^{T})\mathbf {\vec x} $ $ \frac{\partial[(\mathbf X\mathbf {\vec b}+\mathbf {\vec c})^{T}\mathbf A(\mathbf X\mathbf {\vec b}+\mathbf {\vec c})]}{\partial \mathbf X}=(\mathbf A+\mathbf A^{T})(\mathbf X\mathbf {\vec b}+\mathbf {\vec c})\mathbf {\vec b}^{T} $ $ \frac{\partial (\mathbf {\vec b}^{T}\mathbf X^{T}\mathbf A \mathbf X\mathbf {\vec c})}{\partial \mathbf X}=\mathbf A^{T}\mathbf X\mathbf {\vec b}\mathbf {\vec c}^{T}+\mathbf A\mathbf X\mathbf {\vec c}\mathbf {\vec b}^{T} $
如果 $ MathJax-Element-89 $ 是一元函数,则:
其逐元向量函数为: $ MathJax-Element-90 $ 。
其逐矩阵函数为:
$ f(\mathbf X)=\begin{bmatrix} f(x_{1,1})&f(x_{1,2})&\cdots&f(x_{1,n})\\ f(x_{2,1})&f(x_{2,2})&\cdots&f(x_{2,n})\\ \vdots&\vdots&\ddots&\vdots\\ f(x_{m,1})&f(x_{m,2})&\cdots&f(x_{m,n})\\ \end{bmatrix} $其逐元导数分别为:
$ f^{\prime}(\mathbf{\vec x}) =(f^{\prime}(x1),f^{\prime}(x2),\cdots,f^{\prime}(x_n))^{T}\\ f^{\prime}(\mathbf X)=\begin{bmatrix} f^{\prime}(x_{1,1})&f^{\prime}(x_{1,2})&\cdots&f^{\prime}(x_{1,n})\\ f^{\prime}(x_{2,1})&f^{\prime}(x_{2,2})&\cdots&f^{\prime}(x_{2,n})\\ \vdots&\vdots&\ddots&\vdots\\ f^{\prime}(x_{m,1})&f^{\prime}(x_{m,2})&\cdots&f^{\prime}(x_{m,n})\\ \end{bmatrix} $
各种类型的偏导数:
标量对标量的偏导数: $ MathJax-Element-91 $ 。
标量对向量( $ MathJax-Element-119 $ 维向量)的偏导数 : $ MathJax-Element-93 $ 。
标量对矩阵( $ MathJax-Element-99 $ 阶矩阵)的偏导数:
$ \frac{\partial u}{\partial \mathbf V}=\begin{bmatrix} \frac{\partial u}{\partial V_{1,1}}&\frac{\partial u}{\partial V_{1,2}}&\cdots&\frac{\partial u}{\partial V_{1,n}}\\ \frac{\partial u}{\partial V_{2,1}}&\frac{\partial u}{\partial V_{2,2}}&\cdots&\frac{\partial u}{\partial V_{2,n}}\\ \vdots&\vdots&\ddots&\vdots\\ \frac{\partial u}{\partial V_{m,1}}&\frac{\partial u}{\partial V_{m,2}}&\cdots&\frac{\partial u}{\partial V_{m,n}} \end{bmatrix} $向量( $ MathJax-Element-97 $ 维向量)对标量的偏导数: $ MathJax-Element-96 $ 。
向量( $ MathJax-Element-97 $ 维向量)对向量 ( $ MathJax-Element-119 $ 维向量) 的偏导数(雅可比矩阵,行优先)
$ \frac{\partial \mathbf {\vec u}}{\partial \mathbf {\vec v}}=\begin{bmatrix} \frac{\partial u_1}{\partial v_1}&\frac{\partial u_1}{\partial v_2}&\cdots&\frac{\partial u_1}{\partial v_n}\\ \frac{\partial u_2}{\partial v_1}&\frac{\partial u_2}{\partial v_2}&\cdots&\frac{\partial u_2}{\partial v_n}\\ \vdots&\vdots&\ddots&\vdots\\ \frac{\partial u_m}{\partial v_1}&\frac{\partial u_m}{\partial v_2}&\cdots&\frac{\partial u_m}{\partial v_n} \end{bmatrix} $如果为列优先,则为上面矩阵的转置。
矩阵( $ MathJax-Element-99 $ 阶矩阵)对标量的偏导数
对于矩阵的迹,有下列偏导数成立:
$ \frac{\partial [tr(f(\mathbf X))]}{\partial \mathbf X }=(f^{\prime}(\mathbf X))^{T} $ $ \frac{\partial [tr(\mathbf A\mathbf X\mathbf B)]}{\partial \mathbf X }=\mathbf A^{T}\mathbf B^{T} $ $ \frac{\partial [tr(\mathbf A\mathbf X^{T}\mathbf B)]}{\partial \mathbf X }=\mathbf B\mathbf A $ $ \frac{\partial [tr(\mathbf A\otimes\mathbf X )]}{\partial \mathbf X }=tr(\mathbf A)\mathbf I $ $ \frac{\partial [tr(\mathbf A\mathbf X \mathbf B\mathbf X)]}{\partial \mathbf X }=\mathbf A^{T}\mathbf X^{T}\mathbf B^{T}+\mathbf B^{T}\mathbf X \mathbf A^{T} $ $ \frac{\partial [tr(\mathbf X^{T} \mathbf B\mathbf X \mathbf C)]}{\partial \mathbf X }=\mathbf B\mathbf X \mathbf C +\mathbf B^{T}\mathbf X \mathbf C^{T} $ $ \frac{\partial [tr(\mathbf C^{T}\mathbf X^{T} \mathbf B\mathbf X \mathbf C)]}{\partial \mathbf X }=(\mathbf B^{T}+\mathbf B)\mathbf X \mathbf C \mathbf C^{T} $ $ \frac{\partial [tr(\mathbf A\mathbf X \mathbf B\mathbf X^{T} \mathbf C)]}{\partial \mathbf X }= \mathbf A^{T}\mathbf C^{T}\mathbf X\mathbf B^{T}+\mathbf C \mathbf A \mathbf X \mathbf B $ $ \frac{\partial [tr((\mathbf A\mathbf X\mathbf B+\mathbf C)(\mathbf A\mathbf X\mathbf B+\mathbf C))]}{\partial \mathbf X }= 2\mathbf A ^{T}(\mathbf A\mathbf X\mathbf B+\mathbf C)\mathbf B^{T} $假设 $ MathJax-Element-100 $ 是关于 $ MathJax-Element-101 $ 的矩阵值函数( $ MathJax-Element-102 $ ),且 $ MathJax-Element-103 $ 是关于 $ MathJax-Element-104 $ 的实值函数( $ MathJax-Element-105 $ ),则下面链式法则成立:
$ \frac{\partial g(\mathbf U)}{\partial \mathbf X}= \left(\frac{\partial g(\mathbf U)}{\partial x_{i,j}}\right)_{m\times n}=\begin{bmatrix} \frac{\partial g(\mathbf U)}{\partial x_{1,1}}&\frac{\partial g(\mathbf U)}{\partial x_{1,2}}&\cdots&\frac{\partial g(\mathbf U)}{\partial x_{1,n}}\\ \frac{\partial g(\mathbf U)}{\partial x_{2,1}}&\frac{\partial g(\mathbf U)}{\partial x_{2,2}}&\cdots&\frac{\partial g(\mathbf U)}{\partial x_{2,n}}\\ \vdots&\vdots&\ddots&\vdots\\ \frac{\partial g(\mathbf U)}{\partial x_{m,1}}&\frac{\partial g(\mathbf U)}{\partial x_{m,2}}&\cdots&\frac{\partial g(\mathbf U)}{\partial x_{m,n}}\\ \end{bmatrix}\\ =\left(\sum_{k}\sum_{l}\frac{\partial g(\mathbf U)}{\partial u_{k,l}}\frac{\partial u_{k,l}}{\partial x_{i,j}}\right)_{m\times n}=\left(tr\left[\left(\frac{\partial g(\mathbf U)}{\partial \mathbf U}\right)^{T}\frac{\partial \mathbf U}{\partial x_{i,j}}\right]\right)_{m\times n} $
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论