文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
2 斯坦福 cs224d Lecture 2
说明:本文为斯坦福大学 CS224d 课程的中文版内容笔记,已得到斯坦福大学课程 @Richard Socher 教授的授权翻译与发表
课堂笔记:第 2 部分
关键词:内部任务评价(Intrinsic Evaluation)和 外部任务评价(extrinsic evaluations)。超参数影响下的类比评价任务。人类决策和词向量距离的相关性。结合上下文处理歧义。窗口分类。
这个课堂笔记我们将会对词向量(也就是词嵌入)的内部任务评价和外部任务评价方法进行讨论。主要的内容是单词类比(word analogies) 技术,我们会把它当做内部任务评价的技术并展示其相关示例,它会在词向量的调谐(tune)中发挥重要作用。我们还会讨论如何训练模型的权重/参数,并关注用来进行外部任务评价的词向量。最后,我们会简单地提到人工神经网络,它在自然语言处理中表现极好。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论