返回介绍

Preprocessing text data

发布于 2025-02-25 23:43:38 字数 2691 浏览 0 评论 0 收藏 0

Common applciations where there is a need to process text include:

  1. Where the data is text - for example, if you are performing statistical analysis on the content of a billion web pages (perhaps you work for Google), or your research is in statistical natural language processing.
  2. Where you have to preprocess messy real world dataa - e.g. column titles that are inconsistent in order to construct a DataFrame for analysis.

You may need to refer to the following:

  • For string constatns and some utilitiels, see the string module - e.g string.punctuation , string.ascii_lowercase()
  • For basic text processing, see string methods - e.g. lower() , upper() , split() , replace() , find() , count()
  • For regulear expression use, see the re module functions, especially compile() , match() , search() , sub()

As usual, make liberal use of IPython help (e.g string.punctuation? ) to get information on a specific function or classs.

We will illustrate the use of string methods, regular expressions and natural langauge parsing, as well as some Python built-in data structures (e.g. Multiset (counter) and set) that can be used to clean or analyze text data. This is meant only as an walk-thourgh of some of the tools available; refer to the documentation for detals:

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文