返回介绍

solution / 1500-1599 / 1545.Find Kth Bit in Nth Binary String / README_EN

发布于 2024-06-17 01:03:18 字数 5266 浏览 0 评论 0 收藏 0

1545. Find Kth Bit in Nth Binary String

中文文档

Description

Given two positive integers n and k, the binary string Sn is formed as follows:

  • S1 = "0"
  • Si = Si - 1 + "1" + reverse(invert(Si - 1)) for i > 1

Where + denotes the concatenation operation, reverse(x) returns the reversed string x, and invert(x) inverts all the bits in x (0 changes to 1 and 1 changes to 0).

For example, the first four strings in the above sequence are:

  • S1 = "0"
  • S2 = "011"
  • S3 = "0111001"
  • S4 = "011100110110001"

Return _the_ kth _bit_ _in_ Sn. It is guaranteed that k is valid for the given n.

 

Example 1:

Input: n = 3, k = 1
Output: "0"
Explanation: S3 is "0111001".
The 1st bit is "0".

Example 2:

Input: n = 4, k = 11
Output: "1"
Explanation: S4 is "011100110110001".
The 11th bit is "1".

 

Constraints:

  • 1 <= n <= 20
  • 1 <= k <= 2n - 1

Solutions

Solution 1: Case Analysis + Recursion

We can observe that for $S_n$, the first half is the same as $S_{n-1}$, and the second half is the reverse and negation of $S_{n-1}$. Therefore, we can design a function $dfs(n, k)$, which represents the $k$-th character of the $n$-th string. The answer is $dfs(n, k)$.

The calculation process of the function $dfs(n, k)$ is as follows:

  • If $k = 1$, then the answer is $0$;
  • If $k$ is a power of $2$, then the answer is $1$;
  • If $k \times 2 < 2^n - 1$, it means that $k$ is in the first half, and the answer is $dfs(n - 1, k)$;
  • Otherwise, the answer is $dfs(n - 1, 2^n - k) \oplus 1$, where $\oplus$ represents the XOR operation.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the given $n$ in the problem.

class Solution:
  def findKthBit(self, n: int, k: int) -> str:
    def dfs(n: int, k: int) -> int:
      if k == 1:
        return 0
      if (k & (k - 1)) == 0:
        return 1
      m = 1 << n
      if k * 2 < m - 1:
        return dfs(n - 1, k)
      return dfs(n - 1, m - k) ^ 1

    return str(dfs(n, k))
class Solution {
  public char findKthBit(int n, int k) {
    return (char) ('0' + dfs(n, k));
  }

  private int dfs(int n, int k) {
    if (k == 1) {
      return 0;
    }
    if ((k & (k - 1)) == 0) {
      return 1;
    }
    int m = 1 << n;
    if (k * 2 < m - 1) {
      return dfs(n - 1, k);
    }
    return dfs(n - 1, m - k) ^ 1;
  }
}
class Solution {
public:
  char findKthBit(int n, int k) {
    function<int(int, int)> dfs = [&](int n, int k) {
      if (k == 1) {
        return 0;
      }
      if ((k & (k - 1)) == 0) {
        return 1;
      }
      int m = 1 << n;
      if (k * 2 < m - 1) {
        return dfs(n - 1, k);
      }
      return dfs(n - 1, m - k) ^ 1;
    };
    return '0' + dfs(n, k);
  }
};
func findKthBit(n int, k int) byte {
  var dfs func(n, k int) int
  dfs = func(n, k int) int {
    if k == 1 {
      return 0
    }
    if k&(k-1) == 0 {
      return 1
    }
    m := 1 << n
    if k*2 < m-1 {
      return dfs(n-1, k)
    }
    return dfs(n-1, m-k) ^ 1
  }
  return byte('0' + dfs(n, k))
}
function findKthBit(n: number, k: number): string {
  const dfs = (n: number, k: number): number => {
    if (k === 1) {
      return 0;
    }
    if ((k & (k - 1)) === 0) {
      return 1;
    }
    const m = 1 << n;
    if (k * 2 < m - 1) {
      return dfs(n - 1, k);
    }
    return dfs(n - 1, m - k) ^ 1;
  };
  return dfs(n, k).toString();
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文