6.7 main.py
在讲解主程序 main.py
之前,我们先来看看 2017 年 3 月谷歌开源的一个命令行工具 fire
[2] ,通过 pip install fire
即可安装。下面来看看 fire
的基础用法,假设 example.py
文件内容如下:
import fire
def add(x, y):
return x + y
def mul(**kwargs):
a = kwargs['a']
b = kwargs['b']
return a * b
if __name__ == '__main__':
fire.Fire()
那么我们可以使用:
python example.py add 1 2 # 执行 add(1, 2)
python example.py mul --a=1 --b=2 # 执行 mul(a=1, b=2), kwargs={'a':1, 'b':2}
python example.py add --x=1 --y==2 # 执行 add(x=1, y=2)
可见,只要在程序中运行 fire.Fire()
,即可使用命令行参数 python file <function> [args,] {--kwargs,}
。fire 还支持更多的高级功能,具体请参考官方指南[3] 。
在主程序 main.py
中,主要包含四个函数,其中三个需要命令行执行, main.py
的代码组织结构如下:
def train(**kwargs):
'''
训练
'''
pass
def val(model, dataloader):
'''
计算模型在验证集上的准确率等信息,用以辅助训练
'''
pass
def test(**kwargs):
'''
测试(inference)
'''
pass
def help():
'''
打印帮助的信息
'''
print('help')
if __name__=='__main__':
import fire
fire.Fire()
根据 fire 的使用方法,可通过 python main.py <function> --args=xx
的方式来执行训练或者测试。
训练
训练的主要步骤如下:
- 定义网络
- 定义数据
- 定义损失函数和优化器
- 计算重要指标
- 开始训练
- 训练网络
- 可视化各种指标
- 计算在验证集上的指标
训练函数的代码如下:
def train(**kwargs):
# 根据命令行参数更新配置
opt.parse(kwargs)
vis = Visualizer(opt.env)
# step1: 模型
model = getattr(models, opt.model)()
if opt.load_model_path:
model.load(opt.load_model_path)
if opt.use_gpu: model.cuda()
# step2: 数据
train_data = DogCat(opt.train_data_root,train=True)
val_data = DogCat(opt.train_data_root,train=False)
train_dataloader = DataLoader(train_data,opt.batch_size,
shuffle=True,
num_workers=opt.num_workers)
val_dataloader = DataLoader(val_data,opt.batch_size,
shuffle=False,
num_workers=opt.num_workers)
# step3: 目标函数和优化器
criterion = t.nn.CrossEntropyLoss()
lr = opt.lr
optimizer = t.optim.Adam(model.parameters(),
lr = lr,
weight_decay = opt.weight_decay)
# step4: 统计指标:平滑处理之后的损失,还有混淆矩阵
loss_meter = meter.AverageValueMeter()
confusion_matrix = meter.ConfusionMeter(2)
previous_loss = 1e100
# 训练
for epoch in range(opt.max_epoch):
loss_meter.reset()
confusion_matrix.reset()
for ii,(data,label) in enumerate(train_dataloader):
# 训练模型参数
input = Variable(data)
target = Variable(label)
if opt.use_gpu:
input = input.cuda()
target = target.cuda()
optimizer.zero_grad()
score = model(input)
loss = criterion(score,target)
loss.backward()
optimizer.step()
# 更新统计指标以及可视化
loss_meter.add(loss.data[0])
confusion_matrix.add(score.data, target.data)
if ii%opt.print_freq==opt.print_freq-1:
vis.plot('loss', loss_meter.value()[0])
# 如果需要的话,进入 debug 模式
if os.path.exists(opt.debug_file):
import ipdb;
ipdb.set_trace()
model.save()
# 计算验证集上的指标及可视化
val_cm,val_accuracy = val(model,val_dataloader)
vis.plot('val_accuracy',val_accuracy)
vis.log("epoch:{epoch},lr:{lr},loss:{loss},train_cm:{train_cm},val_cm:{val_cm}"
.format(
epoch = epoch,
loss = loss_meter.value()[0],
val_cm = str(val_cm.value()),
train_cm=str(confusion_matrix.value()),
lr=lr))
# 如果损失不再下降,则降低学习率
if loss_meter.value()[0] > previous_loss:
lr = lr * opt.lr_decay
for param_group in optimizer.param_groups:
param_group['lr'] = lr
previous_loss = loss_meter.value()[0]
这里用到了 PyTorchNet[4] 里面的一个工具: meter。meter 提供了一些轻量级的工具,用于帮助用户快速统计训练过程中的一些指标。 AverageValueMeter
能够计算所有数的平均值和标准差,这里用来统计一个 epoch 中损失的平均值。 confusionmeter
用来统计分类问题中的分类情况,是一个比准确率更详细的统计指标。例如对于表格 6-1,共有 50 张狗的图片,其中有 35 张被正确分类成了狗,还有 15 张被误判成猫;共有 100 张猫的图片,其中有 91 张被正确判为了猫,剩下 9 张被误判成狗。相比于准确率等统计信息,混淆矩阵更能体现分类的结果,尤其是在样本比例不均衡的情况下。
表 6-1 混淆矩阵
样本 | 判为狗 | 判为猫 |
---|---|---|
实际是狗 | 35 | 15 |
实际是猫 | 9 | 91 |
PyTorchNet 从 TorchNet[5] 迁移而来,提供了很多有用的工具,但其目前开发和文档都还不是很完善,本书不做过多的讲解。
验证
验证相对来说比较简单,但要注意需将模型置于验证模式( model.eval()
),验证完成后还需要将其置回为训练模式( model.train()
),这两句代码会影响 BatchNorm
和 Dropout
等层的运行模式。验证模型准确率的代码如下。
def val(model,dataloader):
'''
计算模型在验证集上的准确率等信息
'''
# 把模型设为验证模式
model.eval()
confusion_matrix = meter.ConfusionMeter(2)
for ii, data in enumerate(dataloader):
input, label = data
val_input = Variable(input, volatile=True)
val_label = Variable(label.long(), volatile=True)
if opt.use_gpu:
val_input = val_input.cuda()
val_label = val_label.cuda()
score = model(val_input)
confusion_matrix.add(score.data.squeeze(), label.long())
# 把模型恢复为训练模式
model.train()
cm_value = confusion_matrix.value()
accuracy = 100. * (cm_value[0][0] + cm_value[1][1]) /\
(cm_value.sum())
return confusion_matrix, accuracy
测试
测试时,需要计算每个样本属于狗的概率,并将结果保存成 csv 文件。测试的代码与验证比较相似,但需要自己加载模型和数据。
def test(**kwargs):
opt.parse(kwargs)
# 模型
model = getattr(models, opt.model)().eval()
if opt.load_model_path:
model.load(opt.load_model_path)
if opt.use_gpu: model.cuda()
# 数据
train_data = DogCat(opt.test_data_root,test=True)
test_dataloader = DataLoader(train_data,\
batch_size=opt.batch_size,\
shuffle=False,\
num_workers=opt.num_workers)
results = []
for ii,(data,path) in enumerate(test_dataloader):
input = t.autograd.Variable(data,volatile = True)
if opt.use_gpu: input = input.cuda()
score = model(input)
probability = t.nn.functional.softmax\
(score)[:,1].data.tolist()
batch_results = [(path_,probability_) \
for path_,probability_ in zip(path,probability) ]
results += batch_results
write_csv(results,opt.result_file)
return results
帮助函数
为了方便他人使用, 程序中还应当提供一个帮助函数,用于说明函数是如何使用。程序的命令行接口中有众多参数,如果手动用字符串表示不仅复杂,而且后期修改 config 文件时,还需要修改对应的帮助信息,十分不便。这里使用了 Python 标准库中的 inspect 方法,可以自动获取 config 的源代码。help 的代码如下:
def help():
'''
打印帮助的信息: python file.py help
'''
print('''
usage : python {0} <function> [--args=value,]
<function> := train | test | help
example:
python {0} train --env='env0701' --lr=0.01
python {0} test --dataset='path/to/dataset/root/'
python {0} help
avaiable args:'''.format(__file__))
from inspect import getsource
source = (getsource(opt.__class__))
print(source)
当用户执行 python main.py help
的时候,会打印如下帮助信息:
usage : python main.py <function> [--args=value,]
<function> := train | test | help
example:
python main.py train --env='env0701' --lr=0.01
python main.py test --dataset='path/to/dataset/'
python main.py help
avaiable args:
class DefaultConfig(object):
env = 'default' # visdom 环境
model = 'AlexNet' # 使用的模型
train_data_root = './data/train/' # 训练集存放路径
test_data_root = './data/test1' # 测试集存放路径
load_model_path = 'checkpoints/model.pth' # 加载预训练的模型
batch_size = 128 # batch size
use_gpu = True # user GPU or not
num_workers = 4 # how many workers for loading data
print_freq = 20 # print info every N batch
debug_file = '/tmp/debug'
result_file = 'result.csv' # 结果文件
max_epoch = 10
lr = 0.1 # initial learning rate
lr_decay = 0.95 # when val_loss increase, lr = lr*lr_decay
weight_decay = 1e-4 # 损失函数
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论