返回介绍

solution / 0500-0599 / 0510.Inorder Successor in BST II / README_EN

发布于 2024-06-17 01:04:00 字数 4761 浏览 0 评论 0 收藏 0

510. Inorder Successor in BST II

中文文档

Description

Given a node in a binary search tree, return _the in-order successor of that node in the BST_. If that node has no in-order successor, return null.

The successor of a node is the node with the smallest key greater than node.val.

You will have direct access to the node but not to the root of the tree. Each node will have a reference to its parent node. Below is the definition for Node:

class Node {
  public int val;
  public Node left;
  public Node right;
  public Node parent;
}

 

Example 1:

Input: tree = [2,1,3], node = 1
Output: 2
Explanation: 1's in-order successor node is 2. Note that both the node and the return value is of Node type.

Example 2:

Input: tree = [5,3,6,2,4,null,null,1], node = 6
Output: null
Explanation: There is no in-order successor of the current node, so the answer is null.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 104].
  • -105 <= Node.val <= 105
  • All Nodes will have unique values.

 

Follow up: Could you solve it without looking up any of the node's values?

Solutions

Solution 1

"""
# Definition for a Node.
class Node:
  def __init__(self, val):
    self.val = val
    self.left = None
    self.right = None
    self.parent = None
"""


class Solution:
  def inorderSuccessor(self, node: 'Node') -> 'Optional[Node]':
    if node.right:
      node = node.right
      while node.left:
        node = node.left
      return node
    while node.parent and node == node.parent.right:
      node = node.parent
    return node.parent
/*
// Definition for a Node.
class Node {
  public int val;
  public Node left;
  public Node right;
  public Node parent;
};
*/

class Solution {

  public Node inorderSuccessor(Node node) {
    if (node.right != null) {
      node = node.right;
      while (node.left != null) {
        node = node.left;
      }
      return node;
    }
    while (node.parent != null && node == node.parent.right) {
      node = node.parent;
    }
    return node.parent;
  }
}
/*
// Definition for a Node.
class Node {
public:
  int val;
  Node* left;
  Node* right;
  Node* parent;
};
*/

class Solution {
public:
  Node* inorderSuccessor(Node* node) {
    if (node->right) {
      node = node->right;
      while (node->left) node = node->left;
      return node;
    }
    while (node->parent && node == node->parent->right) node = node->parent;
    return node->parent;
  }
};
/**
 * Definition for Node.
 * type Node struct {
 *   Val int
 *   Left *Node
 *   Right *Node
 *   Parent *Node
 * }
 */

func inorderSuccessor(node *Node) *Node {
  if node.Right != nil {
    node = node.Right
    for node.Left != nil {
      node = node.Left
    }
    return node
  }
  for node.Parent != nil && node == node.Parent.Right {
    node = node.Parent
  }
  return node.Parent
}
/**
 * // Definition for a Node.
 * function Node(val) {
 *  this.val = val;
 *  this.left = null;
 *  this.right = null;
 *  this.parent = null;
 * };
 */

/**
 * @param {Node} node
 * @return {Node}
 */
var inorderSuccessor = function (node) {
  if (node.right) {
    node = node.right;
    while (node.left) node = node.left;
    return node;
  }
  while (node.parent && node == node.parent.right) node = node.parent;
  return node.parent;
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文