- Preface
- FAQ
- Guidelines for Contributing
- Contributors
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- 算法复习——排序
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Bitmap
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Add Two Numbers
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Palindrome Linked List
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Unique Binary Search Trees II
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Follow up
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Maximal Square
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- APAC 2016 Round D
- Problem A. Dynamic Grid
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume
- 術語表
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Backpack II
Source
- lintcode: (125) Backpack II
Problem
Given n items with size AiAiAi and value Vi, and a backpack with size m. What's the maximum value can you put into the backpack?
Example
Given 4 items with size [2, 3, 5, 7]
and value [1, 5, 2, 4]
, and a backpack with size 10
. The maximum value is 9
.
Note
You cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.
Challenge
O(n x m) memory is acceptable, can you do it in O(m) memory?
题解
首先定义状态 K(i,w)K(i,w)K(i,w) 为前 iii 个物品放入 size 为 www 的背包中所获得的最大价值,则相应的状态转移方程为: K(i,w)=max{K(i−1,w),K(i−1,w−wi)+vi}K(i,w) = \max \{K(i-1, w), K(i-1, w - w_i) + v_i\}K(i,w)=max{K(i−1,w),K(i−1,w−wi)+vi}
详细分析过程见 Knapsack
C++ - 2D vector for result
class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
if (A.empty() || V.empty() || m < 1) {
return 0;
}
const int N = A.size() + 1;
const int M = m + 1;
vector<vector<int> > result;
result.resize(N);
for (vector<int>::size_type i = 0; i != N; ++i) {
result[i].resize(M);
std::fill(result[i].begin(), result[i].end(), 0);
}
for (vector<int>::size_type i = 1; i != N; ++i) {
for (int j = 0; j != M; ++j) {
if (j < A[i - 1]) {
result[i][j] = result[i - 1][j];
} else {
int temp = result[i - 1][j - A[i - 1]] + V[i - 1];
result[i][j] = max(temp, result[i - 1][j]);
}
}
}
return result[N - 1][M - 1];
}
};
Java
public class Solution {
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
public int backPackII(int m, int[] A, int V[]) {
if (A == null || V == null || A.length == 0 || V.length == 0) return 0;
final int N = A.length;
final int M = m;
int[][] bp = new int[N + 1][M + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= M; j++) {
if (A[i] > j) {
bp[i + 1][j] = bp[i][j];
} else {
bp[i + 1][j] = Math.max(bp[i][j], bp[i][j - A[i]] + V[i]);
}
}
}
return bp[N][M];
}
}
源码分析
- 使用二维矩阵保存结果 result
- 返回 result 矩阵的右下角元素——背包 size 限制为 m 时的最大价值
按照第一题 backpack 的思路,这里可以使用一维数组进行空间复杂度优化。优化方法为逆序求 result[j]
,优化后的代码如下:
C++ 1D vector for result
class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
if (A.empty() || V.empty() || m < 1) {
return 0;
}
const int M = m + 1;
vector<int> result;
result.resize(M);
std::fill(result.begin(), result.end(), 0);
for (vector<int>::size_type i = 0; i != A.size(); ++i) {
for (int j = m; j >= 0; --j) {
if (j < A[i]) {
// result[j] = result[j];
} else {
int temp = result[j - A[i]] + V[i];
result[j] = max(temp, result[j]);
}
}
}
return result[M - 1];
}
};
Reference
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论