返回介绍

solution / 0400-0499 / 0416.Partition Equal Subset Sum / README_EN

发布于 2024-06-17 01:04:00 字数 8583 浏览 0 评论 0 收藏 0

416. Partition Equal Subset Sum

中文文档

Description

Given an integer array nums, return true _if you can partition the array into two subsets such that the sum of the elements in both subsets is equal or _false_ otherwise_.

 

Example 1:

Input: nums = [1,5,11,5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:

Input: nums = [1,2,3,5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.

 

Constraints:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

Solutions

Solution 1

class Solution:
  def canPartition(self, nums: List[int]) -> bool:
    m, mod = divmod(sum(nums), 2)
    if mod:
      return False
    n = len(nums)
    f = [[False] * (m + 1) for _ in range(n + 1)]
    f[0][0] = True
    for i, x in enumerate(nums, 1):
      for j in range(m + 1):
        f[i][j] = f[i - 1][j] or (j >= x and f[i - 1][j - x])
    return f[n][m]
class Solution {
  public boolean canPartition(int[] nums) {
    // int s = Arrays.stream(nums).sum();
    int s = 0;
    for (int x : nums) {
      s += x;
    }
    if (s % 2 == 1) {
      return false;
    }
    int n = nums.length;
    int m = s >> 1;
    boolean[][] f = new boolean[n + 1][m + 1];
    f[0][0] = true;
    for (int i = 1; i <= n; ++i) {
      int x = nums[i - 1];
      for (int j = 0; j <= m; ++j) {
        f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
      }
    }
    return f[n][m];
  }
}
class Solution {
public:
  bool canPartition(vector<int>& nums) {
    int s = accumulate(nums.begin(), nums.end(), 0);
    if (s % 2 == 1) {
      return false;
    }
    int n = nums.size();
    int m = s >> 1;
    bool f[n + 1][m + 1];
    memset(f, false, sizeof(f));
    f[0][0] = true;
    for (int i = 1; i <= n; ++i) {
      int x = nums[i - 1];
      for (int j = 0; j <= m; ++j) {
        f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
      }
    }
    return f[n][m];
  }
};
func canPartition(nums []int) bool {
  s := 0
  for _, x := range nums {
    s += x
  }
  if s%2 == 1 {
    return false
  }
  n, m := len(nums), s>>1
  f := make([][]bool, n+1)
  for i := range f {
    f[i] = make([]bool, m+1)
  }
  f[0][0] = true
  for i := 1; i <= n; i++ {
    x := nums[i-1]
    for j := 0; j <= m; j++ {
      f[i][j] = f[i-1][j] || (j >= x && f[i-1][j-x])
    }
  }
  return f[n][m]
}
function canPartition(nums: number[]): boolean {
  const s = nums.reduce((a, b) => a + b, 0);
  if (s % 2 === 1) {
    return false;
  }
  const n = nums.length;
  const m = s >> 1;
  const f: boolean[][] = Array(n + 1)
    .fill(0)
    .map(() => Array(m + 1).fill(false));
  f[0][0] = true;
  for (let i = 1; i <= n; ++i) {
    const x = nums[i - 1];
    for (let j = 0; j <= m; ++j) {
      f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
    }
  }
  return f[n][m];
}
impl Solution {
  #[allow(dead_code)]
  pub fn can_partition(nums: Vec<i32>) -> bool {
    let mut sum = 0;
    for e in &nums {
      sum += *e;
    }

    if sum % 2 != 0 {
      return false;
    }

    let n = nums.len();
    let m = (sum / 2) as usize;
    let mut dp: Vec<Vec<bool>> = vec![vec![false; m + 1]; n + 1];

    // Initialize the dp vector
    dp[0][0] = true;

    // Begin the actual dp process
    for i in 1..=n {
      for j in 0..=m {
        dp[i][j] = if (nums[i - 1] as usize) > j {
          dp[i - 1][j]
        } else {
          dp[i - 1][j] || dp[i - 1][j - (nums[i - 1] as usize)]
        };
      }
    }

    dp[n][m]
  }
}
/**
 * @param {number[]} nums
 * @return {boolean}
 */
var canPartition = function (nums) {
  const s = nums.reduce((a, b) => a + b, 0);
  if (s % 2 === 1) {
    return false;
  }
  const n = nums.length;
  const m = s >> 1;
  const f = Array(n + 1)
    .fill(0)
    .map(() => Array(m + 1).fill(false));
  f[0][0] = true;
  for (let i = 1; i <= n; ++i) {
    const x = nums[i - 1];
    for (let j = 0; j <= m; ++j) {
      f[i][j] = f[i - 1][j] || (j >= x && f[i - 1][j - x]);
    }
  }
  return f[n][m];
};

Solution 2

class Solution:
  def canPartition(self, nums: List[int]) -> bool:
    m, mod = divmod(sum(nums), 2)
    if mod:
      return False
    f = [True] + [False] * m
    for x in nums:
      for j in range(m, x - 1, -1):
        f[j] = f[j] or f[j - x]
    return f[m]
class Solution {
  public boolean canPartition(int[] nums) {
    // int s = Arrays.stream(nums).sum();
    int s = 0;
    for (int x : nums) {
      s += x;
    }
    if (s % 2 == 1) {
      return false;
    }
    int m = s >> 1;
    boolean[] f = new boolean[m + 1];
    f[0] = true;
    for (int x : nums) {
      for (int j = m; j >= x; --j) {
        f[j] |= f[j - x];
      }
    }
    return f[m];
  }
}
class Solution {
public:
  bool canPartition(vector<int>& nums) {
    int s = accumulate(nums.begin(), nums.end(), 0);
    if (s % 2 == 1) {
      return false;
    }
    int m = s >> 1;
    bool f[m + 1];
    memset(f, false, sizeof(f));
    f[0] = true;
    for (int& x : nums) {
      for (int j = m; j >= x; --j) {
        f[j] |= f[j - x];
      }
    }
    return f[m];
  }
};
func canPartition(nums []int) bool {
  s := 0
  for _, x := range nums {
    s += x
  }
  if s%2 == 1 {
    return false
  }
  m := s >> 1
  f := make([]bool, m+1)
  f[0] = true
  for _, x := range nums {
    for j := m; j >= x; j-- {
      f[j] = f[j] || f[j-x]
    }
  }
  return f[m]
}
function canPartition(nums: number[]): boolean {
  const s = nums.reduce((a, b) => a + b, 0);
  if (s % 2 === 1) {
    return false;
  }
  const m = s >> 1;
  const f: boolean[] = Array(m + 1).fill(false);
  f[0] = true;
  for (const x of nums) {
    for (let j = m; j >= x; --j) {
      f[j] = f[j] || f[j - x];
    }
  }
  return f[m];
}
impl Solution {
  #[allow(dead_code)]
  pub fn can_partition(nums: Vec<i32>) -> bool {
    let mut sum = 0;
    for e in &nums {
      sum += *e;
    }

    if sum % 2 != 0 {
      return false;
    }

    let m = (sum >> 1) as usize;

    // Here dp[i] means if it can be sum up to `i` for all the number we've traversed through so far
    // Which is actually compressing the 2-D dp vector to 1-D
    let mut dp: Vec<bool> = vec![false; m + 1];

    // Initialize the dp vector
    dp[0] = true;

    // Begin the actual dp process
    for e in &nums {
      // For every num in nums vector
      for i in (*e as usize..=m).rev() {
        // Update the current status
        dp[i] |= dp[i - (*e as usize)];
      }
    }

    dp[m]
  }
}
/**
 * @param {number[]} nums
 * @return {boolean}
 */
var canPartition = function (nums) {
  const s = nums.reduce((a, b) => a + b, 0);
  if (s % 2 === 1) {
    return false;
  }
  const m = s >> 1;
  const f = Array(m + 1).fill(false);
  f[0] = true;
  for (const x of nums) {
    for (let j = m; j >= x; --j) {
      f[j] = f[j] || f[j - x];
    }
  }
  return f[m];
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文