- 介绍
- 90-9-1 法则 (90–9–1 Principle or 1% Rule)
- 阿姆达尔定律 (Amdahl's Law)
- 破窗效应 (The Broken Windows Theory)
- 布鲁克斯法则 (Brooks's Law)
- CAP 定理 (CAP Theorem or Brewer's Theorem)
- 康威定律 (Conway's Law)
- 坎宁汉姆定律 (Cunningham's Law)
- 邓巴数字 (Dunbar's Number)
- 邓宁-克鲁格效应 (The Dunning-Kruger Effect)
- 费茨法则 (Fitts's Law)
- 盖尔定律 (Gall's Law)
- 古德哈特定律 (Goodhart's Law)
- 汉隆的剃刀 (Hanlon's Razor)
- 席克定律 (Hick's Law or Hick-Hyman Law)
- 侯世达定律 (Hofstadter's Law)
- 哈特伯定律 (Hutber's Law)
- 技术成熟度曲线 (The Hype Cycle or Amara's Law)
- 隐式接口定律 (Hyrum's Law or The Law of Implicit Interfaces)
- 柯林汉定律 (Kernighan's Law)
- 林纳斯定律 (Linus's Law)
- 梅特卡夫定律 (Metcalfe's Law)
- 摩尔定律 (Moore's Law)
- 墨菲定律 (Murphy's Law / Sod's Law)
- 奥卡姆剃刀 (Occam's Razor)
- 帕金森定理 (Parkinson's Law)
- 过早优化效应 (Premature Optimization Effect)
- 普特定律 (Putt's Law)
- 里德定律 (Reed's Law)
- 复杂性守恒定律 (The Law of Conservation of Complexity or Tesler's Law)
- 得墨忒耳定律 (The Law of Demeter)
- 抽象泄漏定律 (The Law of Leaky Abstractions)
- 帕金森琐碎定理 (The Law of Triviality)
- Unix 哲学 (The Unix Philosophy)
- Spotify 模型 (The Spotify Model)
- 沃德勒定律 (Wadler's Law)
- 惠顿定律 (Wheaton's Law)
- 原则
- 乔治·伯克斯定律 (All Models Are Wrong or George Box's Law)
- 切斯特森围栏 (Chesterson's Fence)
- 死海效应 (The Dead Sea Effect)
- 呆伯特法则 (The Dilbert Principle)
- 帕累托法则 (The Pareto Principle or The 80/20 Rule)
- 舍基原理 (The Shirky Principle)
- 彼得原理 (The Peter Principle)
- 鲁棒性原则 (The Robustness Principle or Postel's Law)
- SOLID
- 单一功能原则 (The Single Responsibility Principle)
- 开闭原则 (The Open/Closed Principle)
- 里氏替换原则 (The Liskov Substitution Principle)
- 接口隔离原则 (The Interface Segregation Principle)
- 依赖反转原则 (The Dependency Inversion Principle)
- 不要重复你自己原则 (The DRY Principle)
- KISS 原则 (The KISS Principle)
- 你不需要它原则 (YAGNI)
- 分布式计算的谬论 (The Fallacies of Distributed Computing)
- 阅读清单
- 在线资源
- 相关项目
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
阿姆达尔定律 (Amdahl's Law)
阿姆达尔定律显示了计算任务通过增加系统资源可以获得的加速潜力。该公式通常用于并行计算中。它可以预测增加处理器数量的实际收益,该收益受到程序可并行比例的限制。
举例说明:如果程序由 A、B 两个部分组成,A 部分必须由单个处理器执行,B 部分可以并行运行。那么向执行程序的系统添加多个处理器只能获得有限的好处。它可以极大地提升 B 部分的运行速度,但 A 部分的运行速度将保持不变。
下图展示了一些运行速度的提升潜能的例子:
(图片来源:By Daniels220 at English Wikipedia, Creative Commons Attribution-Share Alike 3.0 Unported, https://en.wikipedia.org/wiki/File:AmdahlsLaw.svg)
可以看出,50% 并行化的程序在使用大于 10 个处理单元之后的速度提升收效甚微,而 95% 并行化的程序在使用超过一千个处理单元之后仍然可以显著提升速度。
随着摩尔定律减慢,单个处理器的速度增加缓慢,并行化是提高性能的关键。图形编程是一个极好的例子,现代着色器可以并行渲染单个像素或片段。这也是现代显卡通常具有数千个处理核心(GPU 或着色器单元)的原因。
参见:
- 布鲁克斯法则
- 摩尔定律
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论