返回介绍

solution / 1100-1199 / 1129.Shortest Path with Alternating Colors / README_EN

发布于 2024-06-17 01:03:23 字数 7744 浏览 0 评论 0 收藏 0

1129. Shortest Path with Alternating Colors

中文文档

Description

You are given an integer n, the number of nodes in a directed graph where the nodes are labeled from 0 to n - 1. Each edge is red or blue in this graph, and there could be self-edges and parallel edges.

You are given two arrays redEdges and blueEdges where:

  • redEdges[i] = [ai, bi] indicates that there is a directed red edge from node ai to node bi in the graph, and
  • blueEdges[j] = [uj, vj] indicates that there is a directed blue edge from node uj to node vj in the graph.

Return an array answer of length n, where each answer[x] is the length of the shortest path from node 0 to node x such that the edge colors alternate along the path, or -1 if such a path does not exist.

 

Example 1:

Input: n = 3, redEdges = [[0,1],[1,2]], blueEdges = []
Output: [0,1,-1]

Example 2:

Input: n = 3, redEdges = [[0,1]], blueEdges = [[2,1]]
Output: [0,1,-1]

 

Constraints:

  • 1 <= n <= 100
  • 0 <= redEdges.length, blueEdges.length <= 400
  • redEdges[i].length == blueEdges[j].length == 2
  • 0 <= ai, bi, uj, vj < n

Solutions

Solution 1: BFS

The problem is essentially a shortest path problem, which we can consider solving using BFS.

First, we preprocess all the edges, categorizing all the edges by color and storing them in a multi-dimensional array $g$. Where $g[0]$ stores all red edges, and $g[1]$ stores all blue edges.

Next, we define the following data structures or variables:

  • Queue $q$: used to store the currently searched node and the color of the current edge;
  • Set $vis$: used to store the nodes that have been searched and the color of the current edge;
  • Variable $d$: used to represent the current search level, i.e., the distance from the currently searched node to the starting point;
  • Array $ans$: used to store the shortest distance from each node to the starting point. Initially, we initialize all elements in the $ans$ array to $-1$, indicating that the distance from all nodes to the starting point is unknown.

We first enqueue the starting point $0$ and the color of the starting edge $0$ or $1$, indicating that we start from the starting point and the current edge is red or blue.

Next, we start the BFS search. Each time we take out a node $(i, c)$ from the queue, if the answer of the current node has not been updated, then we update the answer of the current node to the current level $d$, i.e., $ans[i] = d$. Then, we flip the color of the current edge $c$, i.e., if the current edge is red, we change it to blue, and vice versa. We take out all edges corresponding to the color, if the other end node $j$ of the edge has not been searched, then we enqueue it.

After the search is over, return the answer array.

The time complexity is $O(n + m)$, and the space complexity is $O(n + m)$. Here, $n$ and $m$ are the number of nodes and edges, respectively.

class Solution:
  def shortestAlternatingPaths(
    self, n: int, redEdges: List[List[int]], blueEdges: List[List[int]]
  ) -> List[int]:
    g = [defaultdict(list), defaultdict(list)]
    for i, j in redEdges:
      g[0][i].append(j)
    for i, j in blueEdges:
      g[1][i].append(j)
    ans = [-1] * n
    vis = set()
    q = deque([(0, 0), (0, 1)])
    d = 0
    while q:
      for _ in range(len(q)):
        i, c = q.popleft()
        if ans[i] == -1:
          ans[i] = d
        vis.add((i, c))
        c ^= 1
        for j in g[c][i]:
          if (j, c) not in vis:
            q.append((j, c))
      d += 1
    return ans
class Solution {
  public int[] shortestAlternatingPaths(int n, int[][] redEdges, int[][] blueEdges) {
    List<Integer>[][] g = new List[2][n];
    for (var f : g) {
      Arrays.setAll(f, k -> new ArrayList<>());
    }
    for (var e : redEdges) {
      g[0][e[0]].add(e[1]);
    }
    for (var e : blueEdges) {
      g[1][e[0]].add(e[1]);
    }
    Deque<int[]> q = new ArrayDeque<>();
    q.offer(new int[] {0, 0});
    q.offer(new int[] {0, 1});
    boolean[][] vis = new boolean[n][2];
    int[] ans = new int[n];
    Arrays.fill(ans, -1);
    int d = 0;
    while (!q.isEmpty()) {
      for (int k = q.size(); k > 0; --k) {
        var p = q.poll();
        int i = p[0], c = p[1];
        if (ans[i] == -1) {
          ans[i] = d;
        }
        vis[i][c] = true;
        c ^= 1;
        for (int j : g[c][i]) {
          if (!vis[j][c]) {
            q.offer(new int[] {j, c});
          }
        }
      }
      ++d;
    }
    return ans;
  }
}
class Solution {
public:
  vector<int> shortestAlternatingPaths(int n, vector<vector<int>>& redEdges, vector<vector<int>>& blueEdges) {
    vector<vector<vector<int>>> g(2, vector<vector<int>>(n));
    for (auto& e : redEdges) {
      g[0][e[0]].push_back(e[1]);
    }
    for (auto& e : blueEdges) {
      g[1][e[0]].push_back(e[1]);
    }
    queue<pair<int, int>> q;
    q.emplace(0, 0);
    q.emplace(0, 1);
    bool vis[n][2];
    memset(vis, false, sizeof vis);
    vector<int> ans(n, -1);
    int d = 0;
    while (!q.empty()) {
      for (int k = q.size(); k; --k) {
        auto [i, c] = q.front();
        q.pop();
        if (ans[i] == -1) {
          ans[i] = d;
        }
        vis[i][c] = true;
        c ^= 1;
        for (int& j : g[c][i]) {
          if (!vis[j][c]) {
            q.emplace(j, c);
          }
        }
      }
      ++d;
    }
    return ans;
  }
};
func shortestAlternatingPaths(n int, redEdges [][]int, blueEdges [][]int) []int {
  g := [2][][]int{}
  for i := range g {
    g[i] = make([][]int, n)
  }
  for _, e := range redEdges {
    g[0][e[0]] = append(g[0][e[0]], e[1])
  }
  for _, e := range blueEdges {
    g[1][e[0]] = append(g[1][e[0]], e[1])
  }
  type pair struct{ i, c int }
  q := []pair{pair{0, 0}, pair{0, 1}}
  ans := make([]int, n)
  vis := make([][2]bool, n)
  for i := range ans {
    ans[i] = -1
  }
  d := 0
  for len(q) > 0 {
    for k := len(q); k > 0; k-- {
      p := q[0]
      q = q[1:]
      i, c := p.i, p.c
      if ans[i] == -1 {
        ans[i] = d
      }
      vis[i][c] = true
      c ^= 1
      for _, j := range g[c][i] {
        if !vis[j][c] {
          q = append(q, pair{j, c})
        }
      }
    }
    d++
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文