- Preface
- FAQ
- Guidelines for Contributing
- Contributors
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- 算法复习——排序
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Bitmap
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Add Two Numbers
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Palindrome Linked List
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Unique Binary Search Trees II
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Follow up
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Maximal Square
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- APAC 2016 Round D
- Problem A. Dynamic Grid
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume
- 術語表
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Previous Permuation
Source
- lintcode: (51) Previous Permuation
Problem
Given a list of integers, which denote a permutation.
Find the previous permutation in ascending order.
Example
For [1,3,2,3]
, the previous permutation is [1,2,3,3]
For [1,2,3,4]
, the previous permutation is [4,3,2,1]
Note
The list may contains duplicate integers.
题解
和前一题 Next Permutation 非常类似,这里找上一个排列,仍然使用字典序算法,大致步骤如下:
- 从后往前寻找索引满足
a[k] > a[k + 1]
, 如果此条件不满足,则说明已遍历到最后一个。 - 从后往前遍历,找到第一个比
a[k]
小的数a[l]
, 即a[k] > a[l]
. - 交换
a[k]
与a[l]
. - 反转
k + 1 ~ n
之间的元素。
为何不从前往后呢?因为只有从后往前才能保证得到的是相邻的排列,可以举个实际例子自行分析。
Python
class Solution:
# @param num : a list of integer
# @return : a list of integer
def previousPermuation(self, num):
if num is None or len(num) <= 1:
return num
# step1: find nums[i] > nums[i + 1], Loop backwards
i = 0
for i in xrange(len(num) - 2, -1, -1):
if num[i] > num[i + 1]:
break
elif i == 0:
# reverse nums if reach maximum
num = num[::-1]
return num
# step2: find nums[i] > nums[j], Loop backwards
j = 0
for j in xrange(len(num) - 1, i, -1):
if num[i] > num[j]:
break
# step3: swap betwenn nums[i] and nums[j]
num[i], num[j] = num[j], num[i]
# step4: reverse between [i + 1, n - 1]
num[i + 1:len(num)] = num[len(num) - 1:i:-1]
return num
C++
class Solution {
public:
/**
* @param nums: An array of integers
* @return: An array of integers that's previous permuation
*/
vector<int> previousPermuation(vector<int> &nums) {
if (nums.empty() || nums.size() <= 1) {
return nums;
}
// step1: find nums[i] > nums[i + 1]
int i = 0;
for (i = nums.size() - 2; i >= 0; --i) {
if (nums[i] > nums[i + 1]) {
break;
} else if (0 == i) {
// reverse nums if reach minimum
reverse(nums, 0, nums.size() - 1);
return nums;
}
}
// step2: find nums[i] > nums[j]
int j = 0;
for (j = nums.size() - 1; j > i; --j) {
if (nums[i] > nums[j]) break;
}
// step3: swap betwenn nums[i] and nums[j]
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
// step4: reverse between [i + 1, n - 1]
reverse(nums, i + 1, nums.size() - 1);
return nums;
}
private:
void reverse(vector<int>& nums, int start, int end) {
for (int i = start, j = end; i < j; ++i, --j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
};
Java
public class Solution {
/**
* @param nums: A list of integers
* @return: A list of integers that's previous permuation
*/
public ArrayList<Integer> previousPermuation(ArrayList<Integer> nums) {
ArrayList<Integer> perm = new ArrayList<Integer>(nums);
if (nums == null || nums.size() == 0) return perm;
// step1: search the first num[k] > num[k+1] backward
int k = -1;
for (int i = perm.size() - 2; i >= 0; i--) {
if (perm.get(i) > perm.get(i + 1)) {
k = i;
break;
}
}
// if current rank is the smallest, reverse it to largest, return
if (k == -1) {
reverse(perm, 0, perm.size() - 1);
return perm;
}
// step2: search the first perm[k] > perm[l] backward
int l = perm.size() - 1;
while (l > k && perm.get(l) >= perm.get(k)) {
l--;
}
// step3: swap perm[k] with perm[l]
Collections.swap(perm, k, l);
// step4: reverse between k+1 and perm.length-1;
reverse(perm, k + 1, perm.size() - 1);
return perm;
}
private void reverse(List<Integer> nums, int lb, int ub) {
for (int i = lb, j = ub; i < j; i++, j--) {
Collections.swap(nums, i, j);
}
}
}
源码分析
和 Permutation 一小节类似,这里只需要注意在 step 1 中 i == -1
时需要反转之以获得最大的序列。对于有重复元素,只要在 step1 和 step2 中判断元素大小时不取等号即可。
复杂度分析
最坏情况下,遍历两次原数组,反转一次数组,时间复杂度为 O(n)O(n)O(n), 使用了 temp 临时变量,空间复杂度可认为是 O(1)O(1)O(1).
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论