- 架构 秒杀系统优化思路
- 架构 细聊分布式 ID 生成方法
- 互联网架构,如何进行容量设计?
- 线程数究竟设多少合理
- 单点系统架构的可用性与性能优化
- 一分钟了解负载均衡的一切
- lvs 为何不能完全替代 DNS 轮询
- 如何实施异构服务器的负载均衡及过载保护?
- 究竟啥才是互联网架构 高并发
- 究竟啥才是互联网架构 高可用
- 100 亿数据 1 万属性数据架构设计
- TCP 接入层的负载均衡、高可用、扩展性架构
- 架构师 数据库与缓存
- 数据库软件架构设计些什么
- 细聊冗余表数据一致性
- 缓存架构设计细节二三事
- 缓存与数据库一致性优化
- 主从 DB 与 cache 一致性优化
- DB 主从一致性架构优化 4 种方法
- 多库多事务降低数据不一致概率
- mysql 并行复制降低主从同步延时的思路与启示
- 互联网公司为啥不使用 mysql 分区表?
- 即使删了全库,保证半小时恢复
- 啥,又要为表增加一列属性?
- 这才是真正的表扩展方案
- 一分钟掌握数据库垂直拆分
- 数据库秒级平滑扩容架构方案
- 100 亿数据平滑数据迁移,不影响服务
- 58 到家数据库 30 条军规解读
- 再议 58 到家数据库军规
- 业界难题 跨库分页 的四种方案
- 架构师 服务化与微服务
- 互联网架构为什么要做服务化?
- 微服务架构多 微 才合适?
- 为什么说要搞定微服务架构,先搞定 RPC 框架?
- 微服务架构之 RPC-client 序列化细节
- RPC-client 异步收发核心细节
- 架构师 消息系统
- http 如何像 tcp 一样实时的收消息?
- 微信为什么不丢消息?
- 微信为啥不丢 离线消息?
- 群消息这么复杂,怎么能做到不丢不重?
- QQ 状态同步究竟是推还是拉?
- 微信多点登录与 QQ 消息漫游架构随想
- 消息 时序 与 一致性 为何这么难?
- 58 到家通用实时消息平台架构细节(Qcon2016)
- 微信为啥这么省流量?
- 应用层/安全层/传输层如何进行协议选型?
- 架构师 消息总线架构
- 10w 定时任务,如何高效触发超时
- 1 分钟实现 延迟消息 功能
- 消息总线能否实现消息必达?
- 架构师 搜索架构
- 深入浅出搜索架构引擎、方案与细节(上)
- 如何迅猛的实现搜索需求
- 百度如何能实时检索到 15 分钟前新生成的网页?
- 架构师 架构实践
- 好架构是进化来的,不是设计来的(58 架构演进)
- 58 同城推荐系统架构设计与实现
- 从 0 开始做互联网推荐-以 58 转转为例
- 从 0 开始做垂直 O2O 个性化推荐-以 58 到家美甲为例
- 58 到家入驻微信钱包的技术优化
- 创业公司快速搭建立体化监控之路(WOT2016)
- 巧用 CAS 解决数据一致性问题
- 百度咋做长文本去重
- 如何快速实现高并发短文检索
- 如何实现超高并发的无锁缓存?
- id 串行化 到底是怎么实现的?
- 从 IDC 到云端架构迁移之路(GITC2016)
- 架构师 一分钟系列
- 一张 神图 看懂单机/集群/热备/磁盘阵列(RAID)
- 一分钟学 awk 够用(产品经理都懂了)
- 十分钟学 perl 够用(客服 MM 都懂了)
- 一分钟 sed 入门(一分钟系列)
- 一分钟了解两阶段提交 2PC(运营 MM 也懂了)
- 30 秒懂 SQL 中的 join(2 幅图+30 秒)
- 连接池原来这么简单(一分钟系列)
- 一分钟实现分布式锁
- 这才是真正的分布式锁
- 一分钟一幅图 TCP/IP 搞定
- 一分钟理解负载 LoadAverage
- 1 分钟了解 Leader-Follower 线程模型
- 架构师 通用素质
- 心态:晋升的为什么不是你
- 你的收入取决于你的努力程度
- 老公,我穿这衣服好看吗 终于破解了
- 一分钟经理人
- 架构师到底该不该写代码
- 如何做一场 B 格满满的技术大会演讲
100 亿数据平滑数据迁移,不影响服务
一、问题的提出
互联网有很多”数据量较大,并发量较大,业务复杂度较高”的业务场景,其典型系统分层架构如下:
(1)上游是 业务层 biz ,实现个性化的业务逻辑
(2)中游是 服务层 service ,封装数据访问
(3)下游是 数据层 db ,存储固化的业务数据
服务化分层架构的好处是,服务层屏蔽下游数据层的复杂性,例如缓存、分库分表、存储引擎等存储细节不需要向调用方暴露,而只向上游提供方便的 RPC 访问接口,当有一些数据层变化的时候,所有的调用方也不需要升级,只需要服务层升级即可。
互联网架构,很多时候面临着这样一些需求:
需求 1->底层表结构变更 :数据量非常大的情况下,数据表增加了一些属性,删除了一些属性,修改了一些属性。
需求 2->分库个数变换 :由于数据量的持续增加,底层分库个数非成倍增加。
需求 3->底层存储介质变换 :底层存储引擎由一个数据库换为另一个数据库。
种种需求,都需要进行数据迁移,如何平滑迁移数据,迁移过程不停机,保证系统持续服务,是文本将要讨论的问题。
二、停机方案
在讨论平滑迁移数据方案之前,先看下不平滑的停机数据迁移方案,主要分三个步骤。
步骤一 : 挂 一个类似“为了给广大用户提供更好的服务,服务器会在凌晨 0:00-0:400 进行停机维护”的 公告 ,并在对应时段进行 停机 ,这个时段系统没有流量进入。
步骤二 :停机后,研发一个 离线 的数据迁移工具,进行 数据迁移 。针对第一节的三类需求,会分别开发不同的数据迁移工具。
(1)底层表结构变更需求:开发旧表导新表的工具
(2)分库个数变换需求:开发 2 库导 3 库的工具
(3)底层存储介质变换需求:开发 Mongo 导 Mysql 工具
步骤三 : 恢复服务 ,并将流量切到新库,不同的需求,可能会涉及不同服务升级。
(1)底层表结构变更需求:服务要升级到访问新表
(2)分库个数变换需求:服务不需要升级,只需要改寻库路由配置
(3)底层存储介质变换需求:服务升级到访问新的存储介质
总的来说,停机方案是相对直观和简单的,但对服务的可用性有影响,许多游戏公司的服务器升级,游戏分区与合区,可能会采用类似的方案。
除了影响服务的可用性,这个方案还有一个缺点,就是必须在指定时间完成升级,这个对研发、测试、运维同学来说, 压力会非常大 ,一旦出现问题例如数据不一致,必须在规定时间内解决,否则只能回滚。根据经验, 人压力越大越容易出错 ,这个缺点一定程度上是致命的。
无论如何,停机方案并不是今天要讨论的重点,接下来看一下常见的平滑数据迁移方案。
三、平滑迁移-追日志法
平滑迁移方案一,追日志法,这个方案主要分为五个步骤。
数据迁移前,上游业务应用通过旧的服务访问旧的数据。
步骤一 :服务进行升级,记录“对旧库上的数据修改”的日志(这里的修改,为数据的 insert, delete, update),这个日志不需要记录详细数据,主要记录:
(1)被修改的库
(2)被修改的表
(3)被修改的唯一主键
具体新增了什么行,修改后的数据格式是什么,不需要详细记录。这样的好处是,不管业务细节如何变化,日志的格式是固定的,这样能保证方案的通用性。
这个服务升级风险较小:
(1)写接口是少数接口,改动点较少
(2)升级只是增加了一些日志,对业务功能没有任何影响
步骤二 :研发一个数据迁移工具,进行数据迁移。这个数据迁移工具和离线迁移工具一样,把旧库中的数据转移到新库中来。
这个小工具的风险较小:
(1)整个过程依然是旧库对线上提供服务
(2)小工具的复杂度较低
(3)任何时间发现问题,都可以把新库中的数据干掉重来
(4)可以限速慢慢迁移,技术同学没有时间压力
数据迁移完成之后,就能够切到新库提供服务了么?
答案是否定的,在数据迁移的过程中,旧库依然对线上提供着服务,库中的数据随时可能变化,这个变化并没有反映到新库中来,于是旧库和新库的数据并不一致,所以不能直接切库,需要将数据追平。
哪些数据发生了变化呢?
步骤一中日志里记录的不就是么?
步骤三 :研发一个读取日志并迁移数据的小工具,要把步骤二迁移数据过程中产生的差异数据追平。这个小工具需要做的是:
(1)读取日志,得到哪个库、哪个表、哪个主键发生了变化
(2)把旧库中对应主键的记录读取出来
(3)把新库中对应主键的记录替换掉
无论如何,原则是数据以旧库为准。
这个小工具的风险也很小:
(1)整个过程依然是旧库对线上提供服务
(2)小工具的复杂度较低
(3)任何时间发现问题,大不了从步骤二开始重来
(4)可以限速慢慢重放日志,技术同学没有时间压力
日志重放之后,就能够切到新库提供服务了么?
答案依然是否定的,在日志重放的过程中,旧库中又可能有数据发生了变化,导致数据不一致,所以还是不能切库,需要进一步读取日志,追平记录。可以看到,重放日志追平数据的程序是一个 while(1) 的程序,新库与旧库中的数据追平也会是一个“无限逼近”的过程。
什么时候数据会完全一致呢?
步骤四 :在持续重放日志,追平数据的过程中,研发一个数据校验的小工具,将旧库和新库中的数据进行比对,直到数据完全一致。
这个小工具的风险依旧很小:
(1)整个过程依然是旧库对线上提供服务
(2)小工具的复杂度较低
(3)任何时间发现问题,大不了从步骤二开始重来
(4)可以限速慢慢比对数据,技术同学没有时间压力
步骤五 :在数据比对完全一致之后,将流量迁移到新库,新库提供服务,完成迁移。
如果步骤四数据一直是 99.9%的一致,不能完全一致,也是正常的,可以做一个秒级的旧库 readonly,等日志重放程序完全追上数据后,再进行切库切流量。
至此,升级完毕,整个过程能够持续对线上提供服务,不影响服务的可用性。
四、平滑迁移-双写法
平滑迁移方案二,双写法,这个方案主要分为四个步骤。
数据迁移前,上游业务应用通过旧的服务访问旧的数据。
步骤一 :服务进行升级,对“对旧库上的数据修改”(这里的修改,为数据的 insert, delete, update),在新库上进行相同的修改操作,这就是所谓的“双写”,主要修改操作包括:
(1)旧库与新库的同时 insert
(2)旧库与新库的同时 delete
(3)旧库与新库的同时 update
由于新库中此时是没有数据的,所以双写旧库与新库中的 affect rows 可能不一样,不过这完全不影响业务功能,只要不切库,依然是旧库提供业务服务。
这个服务升级风险较小:
(1)写接口是少数接口,改动点较少
(2)新库的写操作执行成功与否,对业务功能没有任何影响
步骤二 :研发一个数据迁移工具,进行数据迁移。这个数据迁移工具在本文中已经出现第三次了,把旧库中的数据转移到新库中来。
这个小工具的风险较小:
(1)整个过程依然是旧库对线上提供服务
(2)小工具的复杂度较低
(3)任何时间发现问题,都可以把新库中的数据干掉重来
(4)可以限速慢慢迁移,技术同学没有时间压力
数据迁移完成之后,就能够切到新库提供服务了么?
答案是肯定的,因为前置步骤进行了双写,所以理论上数据迁移完之后,新库与旧库的数据应该完全一致。
由于迁移数据的过程中,旧库新库双写操作在同时进行, 怎么证明数据迁移完成之后数据就完全一致了呢?
如上图所示:
(1)左侧是旧库中的数据,右侧是新库中的数据
(2)按照 primary key 从 min 到 max 的顺序,分段,限速进行数据的迁移,假设已经迁移到 now 这个数据段
数据迁移过程中的修改操作分别讨论:
(1)假设迁移过程中进行了一个 双 insert 操作 ,旧库新库都插入了数据,数据一致性没有被破坏
(2)假设迁移过程中进行了一个 双 delete 操作 ,这又分为两种情况
(2.1)假设这 delete 的数据属于[min,now]范围,即已经完成迁移,则旧库新库都删除了数据,数据一致性没有被破坏
(2.2)假设这 delete 的数据属于[now,max]范围,即未完成迁移,则旧库中删除操作的 affect rows 为 1,新库中删除操作的 affect rows 为 0,但是数据迁移工具在后续数据迁移中,并不会将这条旧库中被删除的数据迁移到新库中,所以数据一致性仍没有被破坏
(3)假设迁移过程中进行了一个 双 update 操作 ,可以认为 update 操作是一个 delete 加一个 insert 操作的复合操作,所以数据仍然是一致的
除非除非除非,在一种非常非常非常极限的情况下:
(1)date-migrate-tool 刚好 从旧库中将某一条数据 X 取出
(2)在 X 插入到新库中之前,旧库与新库中 刚好 对 X 进行了双 delete 操作
(3)date-migrate-tool 再将 X 插入到新库中
这样,会出现新库比旧库多出一条数据 X。
但无论如何,为了保证数据的一致性,切库之前,还是需要进行数据校验的。
步骤三 :在数据迁移完成之后,需要使用数据校验的小工具,将旧库和新库中的数据进行比对,完全一致则符合预期,如果出现步骤二中的极限不一致情况,则以旧库中的数据为准。
这个小工具的风险依旧很小:
(1)整个过程依然是旧库对线上提供服务
(2)小工具的复杂度较低
(3)任何时间发现问题,大不了从步骤二开始重来
(4)可以限速慢慢比对数据,技术同学没有时间压力
步骤四 :数据完全一致之后,将流量切到新库,完成平滑数据迁移。
至此,升级完毕,整个过程能够持续对线上提供服务,不影响服务的可用性。
五、总结
针对互联网很多“数据量较大,并发量较大,业务复杂度较高”的业务场景,在
(1)底层表结构变更
(2)分库个数变换
(3)底层存储介质变换
的众多需求下,需要进行数据迁移,完成 “平滑迁移数据,迁移过程不停机,保证系统持续服务” 有两种常见的解决方案。
追日志法 ,五个步骤:
(1) 服务进行升级 ,记录“对旧库上的数据修改”的日志
(2)研发一个数据迁移 小工具 ,进行数据迁移
(3)研发一个读取日志 小工具 ,追平数据差异
(4)研发一个数据比对 小工具 ,校验数据一致性
(5)流量切到新库,完成平滑迁移
双写法 ,四个步骤:
(1) 服务进行升级 ,记录“对旧库上的数据修改”进行新库的双写
(2)研发一个数据迁移 小工具 ,进行数据迁移
(3)研发一个数据比对 小工具 ,校验数据一致性
(4)流量切到新库,完成平滑迁移
文章比较长,希望大家有收获。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论