- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
Require
The following is a minimal implementation of require
:
function require(name) { var code = new Function("exports", readFile(name)); var exports = {}; code(exports); return exports; } console.log(require("weekDay").name(1)); // → Monday
Since the new Function
constructor wraps the module code in a function, we don’t have to write a wrapping namespace function in the module file itself. And since we make exports
an argument to the module function, the module does not have to declare it. This removes a lot of clutter from our example module.
var names = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"]; exports.name = function(number) { return names[number]; }; exports.number = function(name) { return names.indexOf(name); };
When using this pattern, a module typically starts with a few variable declarations that load the modules it depends on.
var weekDay = require("weekDay"); var today = require("today"); console.log(weekDay.name(today.dayNumber()));
The simplistic implementation of require
given previously has several problems. For one, it will load and run a module every time it is require
d, so if several modules have the same dependency or a require
call is put inside a function that will be called multiple times, time and energy will be wasted.
This can be solved by storing the modules that have already been loaded in an object and simply returning the existing value when one is loaded multiple times.
The second problem is that it is not possible for a module to directly export a value other than the exports
object, such as a function. For example, a module might want to export only the constructor of the object type it defines. Right now, it cannot do that because require
always uses the exports
object it creates as the exported value.
The traditional solution for this is to provide modules with another variable, module
, which is an object that has a property exports
. This property initially points at the empty object created by require
but can be overwritten with another value in order to export something else.
function require(name) { if (name in require.cache) return require.cache[name]; var code = new Function("exports, module", readFile(name)); var exports = {}, module = {exports: exports}; code(exports, module); require.cache[name] = module.exports; return module.exports; } require.cache = Object.create(null);
We now have a module system that uses a single global variable ( require
) to allow modules to find and use each other without going through the global scope.
This style of module system is called CommonJS modules, after the pseudo-standard that first specified it. It is built into the Node.js system. Real implementations do a lot more than the example I showed. Most importantly, they have a much more intelligent way of going from a module name to an actual piece of code, allowing both pathnames relative to the current file and module names that point directly to locally installed modules.
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论