返回介绍

solution / 1600-1699 / 1650.Lowest Common Ancestor of a Binary Tree III / README_EN

发布于 2024-06-17 01:03:16 字数 8732 浏览 0 评论 0 收藏 0

1650. Lowest Common Ancestor of a Binary Tree III

中文文档

Description

Given two nodes of a binary tree p and q, return _their lowest common ancestor (LCA)_.

Each node will have a reference to its parent node. The definition for Node is below:

class Node {
  public int val;
  public Node left;
  public Node right;
  public Node parent;
}

According to the definition of LCA on Wikipedia: "The lowest common ancestor of two nodes p and q in a tree T is the lowest node that has both p and q as descendants (where we allow a node to be a descendant of itself)."

 

Example 1:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.

Example 2:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5 since a node can be a descendant of itself according to the LCA definition.

Example 3:

Input: root = [1,2], p = 1, q = 2
Output: 1

 

Constraints:

  • The number of nodes in the tree is in the range [2, 105].
  • -109 <= Node.val <= 109
  • All Node.val are unique.
  • p != q
  • p and q exist in the tree.

Solutions

Solution 1: Hash Table

We use a hash table $vis$ to record all nodes on the path from node $p$ to the root node. Then we start from node $q$ and traverse towards the root node. If we encounter a node that exists in the hash table $vis$, then this node is the nearest common ancestor of $p$ and $q$, and we can return it directly.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.

"""
# Definition for a Node.
class Node:
  def __init__(self, val):
    self.val = val
    self.left = None
    self.right = None
    self.parent = None
"""


class Solution:
  def lowestCommonAncestor(self, p: "Node", q: "Node") -> "Node":
    vis = set()
    node = p
    while node:
      vis.add(node)
      node = node.parent
    node = q
    while node not in vis:
      node = node.parent
    return node
/*
// Definition for a Node.
class Node {
  public int val;
  public Node left;
  public Node right;
  public Node parent;
};
*/

class Solution {
  public Node lowestCommonAncestor(Node p, Node q) {
    Set<Node> vis = new HashSet<>();
    for (Node node = p; node != null; node = node.parent) {
      vis.add(node);
    }
    for (Node node = q;; node = node.parent) {
      if (!vis.add(node)) {
        return node;
      }
    }
  }
}
/*
// Definition for a Node.
class Node {
public:
  int val;
  Node* left;
  Node* right;
  Node* parent;
};
*/

class Solution {
public:
  Node* lowestCommonAncestor(Node* p, Node* q) {
    unordered_set<Node*> vis;
    for (Node* node = p; node; node = node->parent) {
      vis.insert(node);
    }
    for (Node* node = q;; node = node->parent) {
      if (vis.count(node)) {
        return node;
      }
    }
  }
};
/**
 * Definition for Node.
 * type Node struct {
 *   Val int
 *   Left *Node
 *   Right *Node
 *   Parent *Node
 * }
 */

func lowestCommonAncestor(p *Node, q *Node) *Node {
  vis := map[*Node]bool{}
  for node := p; node != nil; node = node.Parent {
    vis[node] = true
  }
  for node := q; ; node = node.Parent {
    if vis[node] {
      return node
    }
  }
}
/**
 * Definition for a binary tree node.
 * class Node {
 *   val: number
 *   left: Node | null
 *   right: Node | null
 *   parent: Node | null
 *   constructor(val?: number, left?: Node | null, right?: Node | null, parent?: Node | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *     this.parent = (parent===undefined ? null : parent)
 *   }
 * }
 */

function lowestCommonAncestor(p: Node | null, q: Node | null): Node | null {
  const vis: Set<Node> = new Set();
  for (let node = p; node; node = node.parent) {
    vis.add(node);
  }
  for (let node = q; ; node = node.parent) {
    if (vis.has(node)) {
      return node;
    }
  }
}

Solution 2: Two Pointers

We can use two pointers $a$ and $b$ to point to nodes $p$ and $q$ respectively, and then traverse towards the root node. When $a$ and $b$ meet, it is the nearest common ancestor of $p$ and $q$. Otherwise, if pointer $a$ traverses to the root node, then we let it point to node $q$, and do the same for pointer $b$. In this way, when the two pointers meet, it is the nearest common ancestor of $p$ and $q$.

The time complexity is $O(n)$, where $n$ is the number of nodes in the binary tree. The space complexity is $O(1)$.

"""
# Definition for a Node.
class Node:
  def __init__(self, val):
    self.val = val
    self.left = None
    self.right = None
    self.parent = None
"""


class Solution:
  def lowestCommonAncestor(self, p: 'Node', q: 'Node') -> 'Node':
    a, b = p, q
    while a != b:
      a = a.parent if a.parent else q
      b = b.parent if b.parent else p
    return a
/*
// Definition for a Node.
class Node {
  public int val;
  public Node left;
  public Node right;
  public Node parent;
};
*/

class Solution {
  public Node lowestCommonAncestor(Node p, Node q) {
    Node a = p, b = q;
    while (a != b) {
      a = a.parent == null ? q : a.parent;
      b = b.parent == null ? p : b.parent;
    }
    return a;
  }
}
/*
// Definition for a Node.
class Node {
public:
  int val;
  Node* left;
  Node* right;
  Node* parent;
};
*/

class Solution {
public:
  Node* lowestCommonAncestor(Node* p, Node* q) {
    Node* a = p;
    Node* b = q;
    while (a != b) {
      a = a->parent ? a->parent : q;
      b = b->parent ? b->parent : p;
    }
    return a;
  }
};
/**
 * Definition for Node.
 * type Node struct {
 *   Val int
 *   Left *Node
 *   Right *Node
 *   Parent *Node
 * }
 */

func lowestCommonAncestor(p *Node, q *Node) *Node {
  a, b := p, q
  for a != b {
    if a.Parent != nil {
      a = a.Parent
    } else {
      a = q
    }
    if b.Parent != nil {
      b = b.Parent
    } else {
      b = p
    }
  }
  return a
}
/**
 * Definition for a binary tree node.
 * class Node {
 *   val: number
 *   left: Node | null
 *   right: Node | null
 *   parent: Node | null
 *   constructor(val?: number, left?: Node | null, right?: Node | null, parent?: Node | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *     this.parent = (parent===undefined ? null : parent)
 *   }
 * }
 */

function lowestCommonAncestor(p: Node | null, q: Node | null): Node | null {
  let [a, b] = [p, q];
  while (a != b) {
    a = a.parent ?? q;
    b = b.parent ?? p;
  }
  return a;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文