4.平稳时间序列建模
某个时间序列经过预处理,被判定为平稳非白噪声序列,就可以利用ARMA模型进行建模。计算出平稳非白噪声序列{Xt}的自相关系数和偏自相关系数,再由AP(p)模型、MA(q)和ARMA(p,q)的自相关系数和偏自相关系数的性质,选择合适的模型。平稳时间序列建模步骤如图5-17所示。
图5-17 平稳时间序列ARMA模型建模步骤
1)计算ACF和PACF。先计算非平稳白噪声序列的自相关系数(ACF)和偏自相关系数(PACF)。
2)ARMA模型识别。也称为模型定阶,由AR(p)模型、MA(q)和ARMA(p,q)的自相关系数和偏自相关系数的性质,选择合适的模型。识别的原则见表5-24。
表5-24 ARMA模型识别原则
3)估计模型中未知参数的值并进行参数进行检验。
4)模型检验。
5)模型优化。
6)模型应用:进行短期预测。
5.4.4 非平稳时间序列分析
前面介绍了对平稳时间序列进行分析的方法。实际上,在自然界中绝大部分序列都是非平稳的。因而对非平稳序列的分析更普遍、更重要,创造出来的分析方法也更多。
对非平稳时间序列的分析方法可以分为确定性因素分解的时序分析和随机时序分析两大类。
确定性因素分解的方法把所有序列的变化都归结为4个因素(长期趋势、季节变动、循环变动和随机波动)的综合影响,其中长期趋势和季节变动的规律性信息通常比较容易提取,而由随机因素导致的波动则非常难确定和分析,对随机信息浪费严重,会导致模型拟合精度不够理想。
随机时序分析法的发展就是为了弥补确定性因素分解方法的不足。根据时间序列的不同特点,随机时序分析可以建立的模型有ARIMA模型、残差自回归模型、季节模型、异方差模型等。本节重点介绍使用ARIMA模型对非平稳时间序列进行建模的方法。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论