- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
A more lifelike simulation
To make life in our world more interesting, we will add the concepts of food and reproduction. Each living thing in the world gets a new property, energy
, which is reduced by performing actions and increased by eating things. When the critter has enough energy, it can reproduce, generating a new critter of the same kind. To keep things simple, the critters in our world reproduce asexually, all by themselves.
If critters only move around and eat one another, the world will soon succumb to the law of increasing entropy, run out of energy, and become a lifeless wasteland. To prevent this from happening (too quickly, at least), we add plants to the world. Plants do not move. They just use photosynthesis to grow (that is, increase their energy) and reproduce.
To make this work, we’ll need a world with a different letAct
method. We could just replace the method of the World
prototype, but I’ve become very attached to our simulation with the wall-following critters and would hate to break that old world.
One solution is to use inheritance. We create a new constructor, LifelikeWorld
, whose prototype is based on the World
prototype but which overrides the letAct
method. The new letAct
method delegates the work of actually performing an action to various functions stored in the actionTypes
object.
function LifelikeWorld(map, legend) { World.call(this, map, legend); } LifelikeWorld.prototype = Object.create(World.prototype); var actionTypes = Object.create(null); LifelikeWorld.prototype.letAct = function(critter, vector) { var action = critter.act(new View(this, vector)); var handled = action && action.type in actionTypes && actionTypes[action.type].call(this, critter, vector, action); if (!handled) { critter.energy -= 0.2; if (critter.energy <= 0) this.grid.set(vector, null); } };
The new letAct
method first checks whether an action was returned at all, then whether a handler function for this type of action exists, and finally whether that handler returned true, indicating that it successfully handled the action. Note the use of call
to give the handler access to the world, through its this
binding.
If the action didn’t work for whatever reason, the default action is for the creature to simply wait. It loses one-fifth point of energy, and if its energy level drops to zero or below, the creature dies and is removed from the grid.
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论