01. Python 工具
02. Python 基础
03. Numpy
- Numpy 简介
- Matplotlib 基础
- Numpy 数组及其索引
- 数组类型
- 数组方法
- 数组排序
- 数组形状
- 对角线
- 数组与字符串的转换
- 数组属性方法总结
- 生成数组的函数
- 矩阵
- 一般函数
- 向量化函数
- 二元运算
- ufunc 对象
- choose 函数实现条件筛选
- 数组广播机制
- 数组读写
- 结构化数组
- 记录数组
- 内存映射
- 从 Matlab 到 Numpy
04. Scipy
05. Python 进阶
- sys 模块简介
- 与操作系统进行交互:os 模块
- CSV 文件和 csv 模块
- 正则表达式和 re 模块
- datetime 模块
- SQL 数据库
- 对象关系映射
- 函数进阶:参数传递,高阶函数,lambda 匿名函数,global 变量,递归
- 迭代器
- 生成器
- with 语句和上下文管理器
- 修饰符
- 修饰符的使用
- operator, functools, itertools, toolz, fn, funcy 模块
- 作用域
- 动态编译
06. Matplotlib
- Pyplot 教程
- 使用 style 来配置 pyplot 风格
- 处理文本(基础)
- 处理文本(数学表达式)
- 图像基础
- 注释
- 标签
- figures, subplots, axes 和 ticks 对象
- 不要迷信默认设置
- 各种绘图实例
07. 使用其他语言进行扩展
- 简介
- Python 扩展模块
- Cython:Cython 基础,将源代码转换成扩展模块
- Cython:Cython 语法,调用其他C库
- Cython:class 和 cdef class,使用 C++
- Cython:Typed memoryviews
- 生成编译注释
- ctypes
08. 面向对象编程
09. Theano 基础
- Theano 简介及其安装
- Theano 基础
- Theano 在 Windows 上的配置
- Theano 符号图结构
- Theano 配置和编译模式
- Theano 条件语句
- Theano 循环:scan(详解)
- Theano 实例:线性回归
- Theano 实例:Logistic 回归
- Theano 实例:Softmax 回归
- Theano 实例:人工神经网络
- Theano 随机数流变量
- Theano 实例:更复杂的网络
- Theano 实例:卷积神经网络
- Theano tensor 模块:基础
- Theano tensor 模块:索引
- Theano tensor 模块:操作符和逐元素操作
- Theano tensor 模块:nnet 子模块
- Theano tensor 模块:conv 子模块
10. 有趣的第三方模块
11. 有用的工具
- pprint 模块:打印 Python 对象
- pickle, cPickle 模块:序列化 Python 对象
- json 模块:处理 JSON 数据
- glob 模块:文件模式匹配
- shutil 模块:高级文件操作
- gzip, zipfile, tarfile 模块:处理压缩文件
- logging 模块:记录日志
- string 模块:字符串处理
- collections 模块:更多数据结构
- requests 模块:HTTP for Human
12. Pandas
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
choose 函数实现条件筛选
对于数组,我们有时候需要进行类似 switch
和 case
进行条件选择,此时使用 choose 函数十分方便:
In [1]:
import numpy as np
In [2]:
control = np.array([[1,0,1],
[2,1,0],
[1,2,2]])
np.choose(control, [10, 11, 12])
Out[2]:
array([[11, 10, 11],
[12, 11, 10],
[11, 12, 12]])
在上面的例子中,choose
将 0,1,2
对应的值映射为了 10, 11, 12
,这里的 0,1,2
表示对应的下标。
事实上, choose
不仅仅能接受下标参数,还可以接受下标所在的位置:
In [3]:
i0 = np.array([[0,1,2],
[3,4,5],
[6,7,8]])
i2 = np.array([[20,21,22],
[23,24,25],
[26,27,28]])
control = np.array([[1,0,1],
[2,1,0],
[1,2,2]])
np.choose(control, [i0, 10, i2])
Out[3]:
array([[10, 1, 10],
[23, 10, 5],
[10, 27, 28]])
这里,control
传入第一个 1
对应的是 10,传入的第一个 0
对应于 i0
相应位置的值即 1
,剩下的以此类推。
下面的例子将数组中所有小于 10
的值变成了 10
。
In [4]:
a = np.array([[ 0, 1, 2],
[10,11,12],
[20,21,22]])
a < 10
Out[4]:
array([[ True, True, True],
[False, False, False],
[False, False, False]], dtype=bool)
In [5]:
np.choose(a < 10, (a, 10))
Out[5]:
array([[10, 10, 10],
[10, 11, 12],
[20, 21, 22]])
下面的例子将数组中所有小于 10 的值变成了 10,大于 15 的值变成了 15。
In [6]:
a = np.array([[ 0, 1, 2],
[10,11,12],
[20,21,22]])
lt = a < 10
gt = a > 15
choice = lt + 2 * gt
choice
Out[6]:
array([[1, 1, 1],
[0, 0, 0],
[2, 2, 2]])
In [7]:
np.choose(choice, (a, 10, 15))
Out[7]:
array([[10, 10, 10],
[10, 11, 12],
[15, 15, 15]])
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论