返回介绍

solution / 0800-0899 / 0836.Rectangle Overlap / README_EN

发布于 2024-06-17 01:03:34 字数 3161 浏览 0 评论 0 收藏 0

836. Rectangle Overlap

中文文档

Description

An axis-aligned rectangle is represented as a list [x1, y1, x2, y2], where (x1, y1) is the coordinate of its bottom-left corner, and (x2, y2) is the coordinate of its top-right corner. Its top and bottom edges are parallel to the X-axis, and its left and right edges are parallel to the Y-axis.

Two rectangles overlap if the area of their intersection is positive. To be clear, two rectangles that only touch at the corner or edges do not overlap.

Given two axis-aligned rectangles rec1 and rec2, return true_ if they overlap, otherwise return _false.

 

Example 1:

Input: rec1 = [0,0,2,2], rec2 = [1,1,3,3]
Output: true

Example 2:

Input: rec1 = [0,0,1,1], rec2 = [1,0,2,1]
Output: false

Example 3:

Input: rec1 = [0,0,1,1], rec2 = [2,2,3,3]
Output: false

 

Constraints:

  • rec1.length == 4
  • rec2.length == 4
  • -109 <= rec1[i], rec2[i] <= 109
  • rec1 and rec2 represent a valid rectangle with a non-zero area.

Solutions

Solution 1

class Solution:
  def isRectangleOverlap(self, rec1: List[int], rec2: List[int]) -> bool:
    x1, y1, x2, y2 = rec1
    x3, y3, x4, y4 = rec2
    return not (y3 >= y2 or y4 <= y1 or x3 >= x2 or x4 <= x1)
class Solution {
  public boolean isRectangleOverlap(int[] rec1, int[] rec2) {
    int x1 = rec1[0], y1 = rec1[1], x2 = rec1[2], y2 = rec1[3];
    int x3 = rec2[0], y3 = rec2[1], x4 = rec2[2], y4 = rec2[3];
    return !(y3 >= y2 || y4 <= y1 || x3 >= x2 || x4 <= x1);
  }
}
class Solution {
public:
  bool isRectangleOverlap(vector<int>& rec1, vector<int>& rec2) {
    int x1 = rec1[0], y1 = rec1[1], x2 = rec1[2], y2 = rec1[3];
    int x3 = rec2[0], y3 = rec2[1], x4 = rec2[2], y4 = rec2[3];
    return !(y3 >= y2 || y4 <= y1 || x3 >= x2 || x4 <= x1);
  }
};
func isRectangleOverlap(rec1 []int, rec2 []int) bool {
  x1, y1, x2, y2 := rec1[0], rec1[1], rec1[2], rec1[3]
  x3, y3, x4, y4 := rec2[0], rec2[1], rec2[2], rec2[3]
  return !(y3 >= y2 || y4 <= y1 || x3 >= x2 || x4 <= x1)
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文