返回介绍

Column space, Row space, Rank and Kernel

发布于 2025-02-25 23:43:48 字数 1201 浏览 0 评论 0 收藏 0

Let \(A\) be an \(m \times n\) matrix. We can view the columns of \(A\) as vectors, say \(a_1, \dots,, a_n\). The space of all linear combinations of the \(a_i\) are the column space of the matrix \(A\). Now, if \(a_1, \dots ,a_n\) are linearly independent, then the column space is of dimension \(n\). Otherwise, the dimension of the column space is the size of the maximal set of linearly independent \(a_i\). Row space is exactly analogous, but the vectors are the rows of \(A\).

The rank of a matrix A is the dimension of its column space - and - the dimension of its row space. These are equal for any matrix. Rank can be thought of as a measure of non-degeneracy of a system of linear equations, in that it is the dimension of the image of the linear transformation determined by \(A\).

The kernel of a matrix A is the dimension of the space mapped to zero under the linear transformation that \(A\) represents. The dimension of the kernel of a linear transformation is called the nullity.

Index theorem: For an \(m\times n\) matrix \(A\),

rank(\(A\)) + nullity(\(A\)) = \(n\).

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文