返回介绍

solution / 2900-2999 / 2902.Count of Sub-Multisets With Bounded Sum / README_EN

发布于 2024-06-17 01:02:59 字数 7357 浏览 0 评论 0 收藏 0

2902. Count of Sub-Multisets With Bounded Sum

中文文档

Description

You are given a 0-indexed array nums of non-negative integers, and two integers l and r.

Return _the count of sub-multisets within_ nums _where the sum of elements in each subset falls within the inclusive range of_ [l, r].

Since the answer may be large, return it modulo 109 + 7.

A sub-multiset is an unordered collection of elements of the array in which a given value x can occur 0, 1, ..., occ[x] times, where occ[x] is the number of occurrences of x in the array.

Note that:

  • Two sub-multisets are the same if sorting both sub-multisets results in identical multisets.
  • The sum of an empty multiset is 0.

 

Example 1:

Input: nums = [1,2,2,3], l = 6, r = 6
Output: 1
Explanation: The only subset of nums that has a sum of 6 is {1, 2, 3}.

Example 2:

Input: nums = [2,1,4,2,7], l = 1, r = 5
Output: 7
Explanation: The subsets of nums that have a sum within the range [1, 5] are {1}, {2}, {4}, {2, 2}, {1, 2}, {1, 4}, and {1, 2, 2}.

Example 3:

Input: nums = [1,2,1,3,5,2], l = 3, r = 5
Output: 9
Explanation: The subsets of nums that have a sum within the range [3, 5] are {3}, {5}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {1, 1, 2}, {1, 1, 3}, and {1, 2, 2}.

 

Constraints:

  • 1 <= nums.length <= 2 * 104
  • 0 <= nums[i] <= 2 * 104
  • Sum of nums does not exceed 2 * 104.
  • 0 <= l <= r <= 2 * 104

Solutions

Solution 1

class Solution:
  def countSubMultisets(self, nums: List[int], l: int, r: int) -> int:
    kMod = 1_000_000_007
    # dp[i] := # of submultisets of nums with sum i
    dp = [1] + [0] * r
    count = collections.Counter(nums)
    zeros = count.pop(0, 0)

    for num, freq in count.items():
      # stride[i] := dp[i] + dp[i - num] + dp[i - 2 * num] + ...
      stride = dp.copy()
      for i in range(num, r + 1):
        stride[i] += stride[i - num]
      for i in range(r, 0, -1):
        if i >= num * (freq + 1):
          # dp[i] + dp[i - num] + dp[i - freq * num]
          dp[i] = stride[i] - stride[i - num * (freq + 1)]
        else:
          dp[i] = stride[i]

    return (zeros + 1) * sum(dp[l : r + 1]) % kMod
class Solution {
  static final int MOD = 1_000_000_007;
  public int countSubMultisets(List<Integer> nums, int l, int r) {
    Map<Integer, Integer> count = new HashMap<>();
    int total = 0;
    for (int num : nums) {
      total += num;
      if (num <= r) {
        count.merge(num, 1, Integer::sum);
      }
    }
    if (total < l) {
      return 0;
    }
    r = Math.min(r, total);
    int[] dp = new int[r + 1];
    dp[0] = count.getOrDefault(0, 0) + 1;
    count.remove(Integer.valueOf(0));
    int sum = 0;
    for (Map.Entry<Integer, Integer> e : count.entrySet()) {
      int num = e.getKey();
      int c = e.getValue();
      sum = Math.min(sum + c * num, r);
      // prefix part
      // dp[i] = dp[i] + dp[i - num] + ... + dp[i - c*num] + dp[i-(c+1)*num] + ... + dp[i %
      // num]
      for (int i = num; i <= sum; i++) {
        dp[i] = (dp[i] + dp[i - num]) % MOD;
      }
      int temp = (c + 1) * num;
      // correction part
      // subtract dp[i - (freq + 1) * num] to the end part.
      // leves dp[i] = dp[i] + dp[i-num] +...+ dp[i - c*num];
      for (int i = sum; i >= temp; i--) {
        dp[i] = (dp[i] - dp[i - temp] + MOD) % MOD;
      }
    }
    int ans = 0;
    for (int i = l; i <= r; i++) {
      ans += dp[i];
      ans %= MOD;
    }
    return ans;
  }
}
class Solution {
public:
  int countSubMultisets(const vector<int> &nums, int l, int r) {
    int cnt[20001] = {};
    int memo[20001] = {};
    const int mod = 1000000007;
    for (int n : nums) {
      ++cnt[n];
    }
    fill_n(memo, cnt[1] + 1, 1);
    for (int n = 2, total = cnt[1]; n <= r; ++n) {
      if (!cnt[n]) {
        continue;
      }
      int top = (cnt[n] + 1) * n;
      total += n * cnt[n];
      for (int i = n, ii = min(total, r); i <= ii; ++i) {
        memo[i] = (memo[i] + memo[i - n]) % mod;
      }
      for (int i = min(total, r); i >= top; --i) {
        memo[i] = (mod + memo[i] - memo[i - top]) % mod;
      }
    }
    return accumulate(memo + l, memo + r + 1, 0LL) * (cnt[0] + 1) % mod;
  }
};
func countSubMultisets(nums []int, l int, r int) int {
  multiset := make(map[int]int)
  for _, num := range nums {
    multiset[num]++
  }
  mem := make([]int, r+1)
  mem[0] = 1
  prefix := make([]int, len(mem))
  for num, occ := range multiset {
    copy(prefix, mem)
    for sum := num; sum <= r; sum++ {
      prefix[sum] = (prefix[sum] + prefix[sum-num]) % mod
    }
    for sum := r; sum >= 0; sum-- {
      if num > 0 {
        mem[sum] = prefix[sum]
        if sum >= num*(occ+1) {
          mem[sum] = (mem[sum] - prefix[sum-num*(occ+1)] + mod) % mod
        }
      } else {
        mem[sum] = (mem[sum] * (occ + 1)) % mod
      }
    }
  }
  var result int
  for sum := l; sum <= r; sum++ {
    result = (result + mem[sum]) % mod
  }
  return result
}
var mod int = 1e9 + 7
function countSubMultisets(nums: number[], l: number, r: number): number {
  const cnt: number[] = Array(20001).fill(0);
  const memo: number[] = Array(20001).fill(0);
  const mod: number = 1000000007;
  for (const n of nums) {
    cnt[n]++;
  }
  memo.fill(1, 0, cnt[1] + 1);
  let total: number = cnt[1];
  for (let n = 2; n <= r; ++n) {
    if (!cnt[n]) {
      continue;
    }
    const top: number = (cnt[n] + 1) * n;
    total += n * cnt[n];
    for (let i = n, ii = Math.min(total, r); i <= ii; ++i) {
      memo[i] = (memo[i] + memo[i - n]) % mod;
    }
    for (let i = Math.min(total, r); i >= top; --i) {
      memo[i] = (mod + memo[i] - memo[i - top]) % mod;
    }
  }
  let result: number = 0;
  for (let i = l; i <= r; i++) {
    result = (result + memo[i]) % mod;
  }
  return (result * (cnt[0] + 1)) % mod;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文