返回介绍

Using PyMC3

发布于 2025-02-25 23:43:58 字数 1408 浏览 0 评论 0 收藏 0

Install PyMC3 directly from GitHub with

pip install --process-dependency-links git+https://github.com/pymc-devs/pymc3

PyMC3 is alpha software that is intended to improve on PyMC2 in the following ways (from GitHub page):

  • Intuitive model specification syntax, for example, x ~ N(0,1) translates to x = Normal(0,1)
  • Powerful sampling algorithms such as Hamiltonian Monte Carlo
  • Easy optimization for finding the maximum a posteriori point
  • Theano features
    • Numpy broadcasting and advanced indexing
    • Linear algebra operators
    • Computation optimization and dynamic C compilation
  • Simple extensibility

It also comes with extensive examples including ports of the R/JAGS code examples from Doing Bayesian Data Analysis .

However, the API is different and it is not backwards compartible with models specified in PyMC2.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文