- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Generalized ufucns
A universal function performs vectorized looping over scalars. A generalized ufucn performs looping over vectors or arrays. Currently, numpy only ships with a single generalized ufunc. However, they play an important role for JIT compilation with numba
, a topic we will cover in future lectures.
from numpy.core.umath_tests import matrix_multiply print matrix_multiply.signature
(m,n),(n,p)->(m,p)
us = np.random.random((5, 2, 3)) # 5 2x3 matrics vs = np.random.random((5, 3, 4)) # 5 3x4 matrices # perform matrix multiplication for each of the 5 sets of matrices ws = matrix_multiply(us, vs) print ws.shape print ws
(5, 2, 4) [[[ 1.6525 0.7642 1.8964 0.831 ] [ 1.1368 0.5137 1.0785 0.7104]] [[ 1.0613 1.1923 1.2143 1.0832] [ 1.0266 0.8275 0.8543 0.6412]] [[ 0.8015 0.8953 0.358 0.4282] [ 0.3202 0.3222 0.2113 0.1709]] [[ 0.7747 1.0522 1.1458 0.892 ] [ 0.8178 1.1741 0.9486 1.0363]] [[ 1.5257 0.7962 1.3355 0.707 ] [ 1.3522 0.6577 0.9845 0.6013]]]
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论