- Preface
- FAQ
- Guidelines for Contributing
- Contributors
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- 算法复习——排序
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Bitmap
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Add Two Numbers
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Palindrome Linked List
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Unique Binary Search Trees II
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Follow up
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Maximal Square
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- APAC 2016 Round D
- Problem A. Dynamic Grid
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume
- 術語表
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Topological Sorting
Source
Given an directed graph, a topological order of the graph nodes is defined as follow:
For each directed edge A -> B in graph, A must before B in the order list.
The first node in the order can be any node in the graph with no nodes direct to it.
Find any topological order for the given graph.
Example For graph as follow:
The topological order can be:
[0, 1, 2, 3, 4, 5]
[0, 2, 3, 1, 5, 4]
...
Note
You can assume that there is at least one topological order in the graph.
Challenge
Can you do it in both BFS and DFS?
题解 1 - DFS and BFS
图搜索相关的问题较为常见的解法是用 DFS ,这里结合 BFS 进行求解,分为三步走:
- 统计各定点的入度——只需统计节点在邻接列表中出现的次数即可知。
- 遍历图中各节点,找到入度为 0 的节点。
- 对入度为 0 的节点进行递归 DFS ,将节点加入到最终返回结果中。
C++
/**
* Definition for Directed graph.
* struct DirectedGraphNode {
* int label;
* vector<DirectedGraphNode *> neighbors;
* DirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
/**
* @param graph: A list of Directed graph node
* @return: Any topological order for the given graph.
*/
vector<DirectedGraphNode*> topSort(vector<DirectedGraphNode*> graph) {
vector<DirectedGraphNode*> result;
if (graph.size() == 0) return result;
map<DirectedGraphNode*, int> indegree;
// get indegree of all DirectedGraphNode
indeg(graph, indegree);
// dfs recursively
for (int i = 0; i < graph.size(); ++i) {
if (indegree[graph[i]] == 0) {
dfs(indegree, graph[i], result);
}
}
return result;
}
private:
/** get indegree of all DirectedGraphNode
*
*/
void indeg(vector<DirectedGraphNode*> &graph,
map<DirectedGraphNode*, int> &indegree) {
for (int i = 0; i < graph.size(); ++i) {
for (int j = 0; j < graph[i]->neighbors.size(); j++) {
if (indegree.find(graph[i]->neighbors[j]) == indegree.end()) {
indegree[graph[i]->neighbors[j]] = 1;
} else {
indegree[graph[i]->neighbors[j]] += 1;
}
}
}
}
void dfs (map<DirectedGraphNode*, int> &indegree, DirectedGraphNode *i,
vector<DirectedGraphNode*> &ret) {
ret.push_back(i);
indegree[i]--;
for (int j = 0; j < i->neighbors.size(); ++j) {
indegree[i->neighbors[j]]--;
if (indegree[i->neighbors[j]] == 0) {
dfs(indegree, i->neighbors[j], ret);
}
}
}
};
源码分析
C++中使用 unordered_map 可获得更高的性能,私有方法中使用引用传值。
复杂度分析
以 V 表示顶点数,E 表示有向图中边的条数。
首先获得节点的入度数,时间复杂度为 O(V+E)O(V+E)O(V+E), 使用了哈希表存储,空间复杂度为 O(V)O(V)O(V). 遍历图求得入度为 0 的节点,时间复杂度为 O(V)O(V)O(V). 仅在入度为 0 时调用 DFS ,故时间复杂度为 O(V+E)O(V+E)O(V+E).
需要注意的是这里的 DFS 不是纯 DFS ,使用了 BFS 的思想进行了优化,否则一个节点将被遍历多次,时间复杂度可能恶化为指数级别。
综上,时间复杂度近似为 O(V+E)O(V+E)O(V+E), 空间复杂度为 O(V)O(V)O(V).
题解 2 - BFS
拓扑排序除了可用 DFS 求解外,也可使用 BFS , 具体方法为:
- 获得图中各节点的入度。
- BFS 首先遍历求得入度数为 0 的节点,入队,便于下一次 BFS 。
- 队列不为空时,弹出队顶元素并对其邻接节点进行 BFS ,将入度为 0 的节点加入到最终结果和队列中,重复此过程直至队列为空。
C++
/**
* Definition for Directed graph.
* struct DirectedGraphNode {
* int label;
* vector<DirectedGraphNode *> neighbors;
* DirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
/**
* @param graph: A list of Directed graph node
* @return: Any topological order for the given graph.
*/
vector<DirectedGraphNode*> topSort(vector<DirectedGraphNode*> graph) {
vector<DirectedGraphNode*> result;
if (graph.size() == 0) return result;
map<DirectedGraphNode*, int> indegree;
// get indegree of all DirectedGraphNode
indeg(graph, indegree);
queue<DirectedGraphNode*> q;
// bfs
bfs(graph, indegree, q, result);
return result;
}
private:
/** get indegree of all DirectedGraphNode
*
*/
void indeg(vector<DirectedGraphNode*> &graph,
map<DirectedGraphNode*, int> &indegree) {
for (int i = 0; i < graph.size(); ++i) {
for (int j = 0; j < graph[i]->neighbors.size(); j++) {
if (indegree.find(graph[i]->neighbors[j]) == indegree.end()) {
indegree[graph[i]->neighbors[j]] = 1;
} else {
indegree[graph[i]->neighbors[j]] += 1;
}
}
}
}
void bfs (vector<DirectedGraphNode*> &graph, map<DirectedGraphNode*, int> &indegree,
queue<DirectedGraphNode *> &q, vector<DirectedGraphNode*> &ret) {
for (int i = 0; i < graph.size(); ++i) {
if (indegree[graph[i]] == 0) {
ret.push_back(graph[i]);
q.push(graph[i]);
}
}
while (!q.empty()) {
DirectedGraphNode *cur = q.front();
q.pop();
for(int j = 0; j < cur->neighbors.size(); ++j) {
indegree[cur->neighbors[j]]--;
if (indegree[cur->neighbors[j]] == 0) {
ret.push_back(cur->neighbors[j]);
q.push(cur->neighbors[j]);
}
}
}
}
};
源码分析
C++中在判断入度是否为 0 时将对 map 产生副作用,在求入度数时只有入度数大于等于 1 才会出现在 map 中,故不在 map 中时直接调用 indegree 方法将产生新的键值对,初始值为 0,恰好满足此题需求。
复杂度分析
同题解 1 的分析,时间复杂度为 O(V+E)O(V+E)O(V+E), 空间复杂度为 O(V)O(V)O(V).
Reference
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论