- GUI
- Windows API tutorial
- Introduction to Windows API
- Windows API main functions
- System functions in Windows API
- Strings in Windows API
- Date & time in Windows API
- A window in Windows API
- First steps in UI
- Windows API menus
- Windows API dialogs
- Windows API controls I
- Windows API controls II
- Windows API controls III
- Advanced controls in Windows API
- Custom controls in Windows API
- The GDI in Windows API
- PyQt4 tutorial
- PyQt5 tutorial
- Qt4 tutorial
- Introduction to Qt4 toolkit
- Qt4 utility classes
- Strings in Qt4
- Date and time in Qt4
- Working with files and directories in Qt4
- First programs in Qt4
- Menus and toolbars in Qt4
- Layout management in Qt4
- Events and signals in Qt4
- Qt4 Widgets
- Qt4 Widgets II
- Painting in Qt4
- Custom widget in Qt4
- The Breakout game in Qt4
- Qt5 tutorial
- Introduction to Qt5 toolkit
- Strings in Qt5
- Date and time in Qt5
- Containers in Qt5
- Working with files and directories in Qt5
- First programs in Qt5
- Menus and toolbars in Qt5
- Layout management in Qt5
- Events and signals in Qt5
- Qt5 Widgets
- Qt5 Widgets II
- Painting in Qt5
- Custom widget in Qt5
- Snake in Qt5
- The Breakout game in Qt5
- PySide tutorial
- Tkinter tutorial
- Tcl/Tk tutorial
- Qt Quick tutorial
- Java Swing tutorial
- JavaFX tutorial
- Java SWT tutorial
- wxWidgets tutorial
- Introduction to wxWidgets
- wxWidgets helper classes
- First programs in wxWidgets
- Menus and toolbars in wxWidgets
- Layout management in wxWidgets
- Events in wxWidgets
- Dialogs in wxWidgets
- wxWidgets widgets
- wxWidgets widgets II
- Drag and Drop in wxWidgets
- Device Contexts in wxWidgets
- Custom widgets in wxWidgets
- The Tetris game in wxWidgets
- wxPython tutorial
- Introduction to wxPython
- First Steps
- Menus and toolbars
- Layout management in wxPython
- Events in wxPython
- wxPython dialogs
- Widgets
- Advanced widgets in wxPython
- Drag and drop in wxPython
- Internationalisation
- Application skeletons in wxPython
- The GDI
- Mapping modes
- Creating custom widgets
- Tips and Tricks
- wxPython Gripts
- The Tetris game in wxPython
- C# Winforms Mono tutorial
- Java Gnome tutorial
- Introduction to Java Gnome
- First steps in Java Gnome
- Layout management in Java Gnome
- Layout management II in Java Gnome
- Menus in Java Gnome
- Toolbars in Java Gnome
- Events in Java Gnome
- Widgets in Java Gnome
- Widgets II in Java Gnome
- Advanced widgets in Java Gnome
- Dialogs in Java Gnome
- Pango in Java Gnome
- Drawing with Cairo in Java Gnome
- Drawing with Cairo II
- Nibbles in Java Gnome
- QtJambi tutorial
- GTK+ tutorial
- Ruby GTK tutorial
- GTK# tutorial
- Visual Basic GTK# tutorial
- PyGTK tutorial
- Introduction to PyGTK
- First steps in PyGTK
- Layout management in PyGTK
- Menus in PyGTK
- Toolbars in PyGTK
- Signals & events in PyGTK
- Widgets in PyGTK
- Widgets II in PyGTK
- Advanced widgets in PyGTK
- Dialogs in PyGTK
- Pango
- Pango II
- Drawing with Cairo in PyGTK
- Drawing with Cairo II
- Snake game in PyGTK
- Custom widget in PyGTK
- PHP GTK tutorial
- C# Qyoto tutorial
- Ruby Qt tutorial
- Visual Basic Qyoto tutorial
- Mono IronPython Winforms tutorial
- Introduction
- First steps in IronPython Mono Winforms
- Layout management
- Menus and toolbars
- Basic Controls in Mono Winforms
- Basic Controls II in Mono Winforms
- Advanced Controls in Mono Winforms
- Dialogs
- Drag & drop in Mono Winforms
- Painting
- Painting II in IronPython Mono Winforms
- Snake in IronPython Mono Winforms
- The Tetris game in IronPython Mono Winforms
- FreeBASIC GTK tutorial
- Jython Swing tutorial
- JRuby Swing tutorial
- Visual Basic Winforms tutorial
- JavaScript GTK tutorial
- Ruby HTTPClient tutorial
- Ruby Faraday tutorial
- Ruby Net::HTTP tutorial
- Java 2D games tutorial
- Java 2D tutorial
- Cairo graphics tutorial
- PyCairo tutorial
- HTML5 canvas tutorial
- Python tutorial
- Python language
- Interactive Python
- Python lexical structure
- Python data types
- Strings in Python
- Python lists
- Python dictionaries
- Python operators
- Keywords in Python
- Functions in Python
- Files in Python
- Object-oriented programming in Python
- Modules
- Packages in Python
- Exceptions in Python
- Iterators and Generators
- Introspection in Python
- Ruby tutorial
- PHP tutorial
- Visual Basic tutorial
- Visual Basic
- Visual Basic lexical structure
- Basics
- Visual Basic data types
- Strings in Visual Basic
- Operators
- Flow control
- Visual Basic arrays
- Procedures & functions in Visual Basic
- Organizing code in Visual Basic
- Object-oriented programming
- Object-oriented programming II in Visual Basic
- Collections in Visual Basic
- Input & output
- Tcl tutorial
- C# tutorial
- Java tutorial
- AWK tutorial
- Jetty tutorial
- Tomcat Derby tutorial
- Jtwig tutorial
- Android tutorial
- Introduction to Android development
- First Android application
- Android Button widgets
- Android Intents
- Layout management in Android
- Android Spinner widget
- SeekBar widget
- Android ProgressBar widget
- Android ListView widget
- Android Pickers
- Android menus
- Dialogs
- Drawing in Android
- Java EE 5 tutorials
- Introduction
- Installing Java
- Installing NetBeans 6
- Java Application Servers
- Resin CGIServlet
- JavaServer Pages, (JSPs)
- Implicit objects in JSPs
- Shopping cart
- JSP & MySQL Database
- Java Servlets
- Sending email in a Servlet
- Creating a captcha in a Servlet
- DataSource & DriverManager
- Java Beans
- Custom JSP tags
- Object relational mapping with iBATIS
- Jsoup tutorial
- MySQL tutorial
- MySQL quick tutorial
- MySQL storage engines
- MySQL data types
- Creating, altering and dropping tables in MySQL
- MySQL expressions
- Inserting, updating, and deleting data in MySQL
- The SELECT statement in MySQL
- MySQL subqueries
- MySQL constraints
- Exporting and importing data in MySQL
- Joining tables in MySQL
- MySQL functions
- Views in MySQL
- Transactions in MySQL
- MySQL stored routines
- MySQL Python tutorial
- MySQL Perl tutorial
- MySQL C API programming tutorial
- MySQL Visual Basic tutorial
- MySQL PHP tutorial
- MySQL Java tutorial
- MySQL Ruby tutorial
- MySQL C# tutorial
- SQLite tutorial
- SQLite C tutorial
- SQLite PHP tutorial
- SQLite Python tutorial
- SQLite Perl tutorial
- SQLite Ruby tutorial
- SQLite C# tutorial
- SQLite Visual Basic tutorial
- PostgreSQL C tutorial
- PostgreSQL Python tutorial
- PostgreSQL Ruby tutorial
- PostgreSQL PHP tutorial
- PostgreSQL Java tutorial
- Apache Derby tutorial
- SQLAlchemy tutorial
- MongoDB PHP tutorial
- MongoDB Java tutorial
- MongoDB JavaScript tutorial
- MongoDB Ruby tutorial
- Spring JdbcTemplate tutorial
- JDBI tutorial
Transformations
In this part of the Cairo graphics programming tutorial, we will talk about transformations.
An affine transform is composed of zero or more linear transformations (rotation, scaling or shear) and translation (shift). Several linear transformations can be combined into a single matrix. A rotation is a transformation that moves a rigid body around a fixed point. A scaling is a transformation that enlarges or diminishes objects. The scale factor is the same in all directions. A translation is a transformation that moves every point a constant distance in a specified direction. A shear is a transformation that moves an object perpendicular to a given axis, with greater value on one side of the axis than the other.
sources: (wikipedia.org, freedictionary.com)
Translation
The following example describes a simple translation.
static void do_drawing(cairo_t *cr) { cairo_set_source_rgb(cr, 0.2, 0.3, 0.8); cairo_rectangle(cr, 10, 10, 30, 30); cairo_fill(cr); cairo_translate(cr, 20, 20); cairo_set_source_rgb(cr, 0.8, 0.3, 0.2); cairo_rectangle(cr, 0, 0, 30, 30); cairo_fill(cr); cairo_translate(cr, 30, 30); cairo_set_source_rgb(cr, 0.8, 0.8, 0.2); cairo_rectangle(cr, 0, 0, 30, 30); cairo_fill(cr); cairo_translate(cr, 40, 40); cairo_set_source_rgb(cr, 0.3, 0.8, 0.8); cairo_rectangle(cr, 0, 0, 30, 30); cairo_fill(cr); }
The examle draws a rectangle. Then we do a translation and draw the same rectangle again.
cairo_translate(cr, 20, 20);
The cairo_translate()
function modifies the current transormation matrix by translating the user space origin. In our case we shift the origin by 20 units in both directions.

Shear
In the following example, we perform a shearing operation. A shearing is an object distortion along a particular axis. There is no shear function for this operation. We need to create our own transformation matrix. Note that each affine transformation can be performed by creating a transformation matrix.
static void do_drawing(cairo_t *cr) { cairo_matrix_t matrix; cairo_set_source_rgb(cr, 0.6, 0.6, 0.6); cairo_rectangle(cr, 20, 30, 80, 50); cairo_fill(cr); cairo_matrix_init(&matrix, 1.0, 0.5, 0.0, 1.0, 0.0, 0.0); cairo_transform(cr, &matrix); cairo_rectangle(cr, 130, 30, 80, 50); cairo_fill(cr); }
In this code example, we perform a simple shearing operation.
cairo_matrix_t matrix;
The cairo_matrix_t
is a structure that holds an affine transformation.
cairo_matrix_init(&matrix, 1.0, 0.5, 0.0, 1.0, 0.0, 0.0);
This transformation shears y values by 0.5 of the x values.
cairo_transform(cr, &matrix);
We perform the transformation with the transform() method.

Scaling
The next example demonstrates a scaling operation. Scaling is a transformation operation where the object is enlarged or shrunken.
static void do_drawing(cairo_t *cr) { cairo_set_source_rgb(cr, 0.2, 0.3, 0.8); cairo_rectangle(cr, 10, 10, 90, 90); cairo_fill(cr); cairo_scale(cr, 0.6, 0.6); cairo_set_source_rgb(cr, 0.8, 0.3, 0.2); cairo_rectangle(cr, 30, 30, 90, 90); cairo_fill(cr); cairo_scale(cr, 0.8, 0.8); cairo_set_source_rgb(cr, 0.8, 0.8, 0.2); cairo_rectangle(cr, 50, 50, 90, 90); cairo_fill(cr); }
We draw three rectangles of 90x90px size. On two of them, we perform a scaling operation.
cairo_scale(cr, 0.6, 0.6); cairo_set_source_rgb(cr, 0.8, 0.3, 0.2); cairo_rectangle(cr, 30, 30, 90, 90); cairo_fill(cr);
We uniformly scale a rectangle by a factor of 0.6.
cairo_scale(cr, 0.8, 0.8); cairo_set_source_rgb(cr, 0.8, 0.8, 0.2); cairo_rectangle(cr, 50, 50, 90, 90); cairo_fill(cr);
Here we perform another scaling operation by a factor of 0.8. If we look at the picture, we see that the third yellow rectangle is the smallest one. Even if we have used a smaller scaling factor. This is because transformation operations are additive. In fact, the third rectangle was scaled by a factor of 0.528 (0.6x0.8).

Isolating transformations
Transformation operations are additive. To isolate one operation from the other one, we can use the cairo_save()
and cairo_restore()
functions. The cairo_save()
function makes a copy of the current state of the drawing context and saves it on an internal stack of saved states. The cairo_restore()
function will re-establish the context to the saved state.
static void do_drawing(cairo_t *cr) { cairo_set_source_rgb(cr, 0.2, 0.3, 0.8); cairo_rectangle(cr, 10, 10, 90, 90); cairo_fill(cr); cairo_save(cr); cairo_scale(cr, 0.6, 0.6); cairo_set_source_rgb(cr, 0.8, 0.3, 0.2); cairo_rectangle(cr, 30, 30, 90, 90); cairo_fill(cr); cairo_restore(cr); cairo_save(cr); cairo_scale(cr, 0.8, 0.8); cairo_set_source_rgb(cr, 0.8, 0.8, 0.2); cairo_rectangle(cr, 50, 50, 90, 90); cairo_fill(cr); cairo_restore(cr); }
In the example we scale two rectangles. This time we isolate the scaling operations from each other.
cairo_save(cr); cairo_scale(cr, 0.6, 0.6); cairo_set_source_rgb(cr, 0.8, 0.3, 0.2); cairo_rectangle(cr, 30, 30, 90, 90); cairo_fill(cr); cairo_restore(cr);
We isolate the scaling operation by putting the cairo_scale()
function between the cairo_save()
and cairo_restore()
functions.

Now the third yellow rectangle is bigger than the second red one.
Donut
In the following example we create an complex shape by rotating a bunch of ellipses.
#include <cairo.h> #include <gtk/gtk.h> #include <math.h> static void do_drawing(cairo_t *, GtkWidget *widget); static gboolean on_draw_event(GtkWidget *widget, cairo_t *cr, gpointer user_data) { do_drawing(cr, widget); return FALSE; } static void do_drawing(cairo_t *cr, GtkWidget *widget) { GtkWidget *win = gtk_widget_get_toplevel(widget); gint width, height; gtk_window_get_size(GTK_WINDOW(win), &width, &height); cairo_set_line_width(cr, 0.5); cairo_translate(cr, width/2, height/2); cairo_arc(cr, 0, 0, 120, 0, 2 * M_PI); cairo_stroke(cr); gint i; for (i = 0; i < 36; i++) { cairo_save(cr); cairo_rotate(cr, i*M_PI/36); cairo_scale(cr, 0.3, 1); cairo_arc(cr, 0, 0, 120, 0, 2 * M_PI); cairo_restore(cr); cairo_stroke(cr); } } int main(int argc, char *argv[]) { GtkWidget *window; GtkWidget *darea; gtk_init(&argc, &argv); window = gtk_window_new(GTK_WINDOW_TOPLEVEL); darea = gtk_drawing_area_new(); gtk_container_add(GTK_CONTAINER (window), darea); g_signal_connect(G_OBJECT(darea), "draw", G_CALLBACK(on_draw_event), NULL); g_signal_connect(G_OBJECT(window), "destroy", G_CALLBACK(gtk_main_quit), NULL); gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER); gtk_window_set_default_size(GTK_WINDOW(window), 350, 250); gtk_window_set_title(GTK_WINDOW(window), "Donut"); gtk_widget_show_all(window); gtk_main(); return 0; }
We will do rotation and scaling operations. We will also save and restore Cairo contexts.
cairo_translate(cr, width/2, height/2); cairo_arc(cr, 0, 0, 120, 0, 2 * M_PI); cairo_stroke(cr);
In the middle of the GTK+ window, we create a circle. This will be a bounding circle for our ellipses.
gint i; for (i = 0; i < 36; i++) { cairo_save(cr); cairo_rotate(cr, i*M_PI/36); cairo_scale(cr, 0.3, 1); cairo_arc(cr, 0, 0, 120, 0, 2 * M_PI); cairo_restore(cr); cairo_stroke(cr); }
We create 36 ellipses along the path of our bounding circle. We insulate each rotate and scale operation from one another with the cairo_save()
and cairo_restore()
methods.
Star
The next example shows a rotating and scaling star.
#include <cairo.h> #include <gtk/gtk.h> static void do_drawing(cairo_t *, GtkWidget *widget); int points[11][2] = { { 0, 85 }, { 75, 75 }, { 100, 10 }, { 125, 75 }, { 200, 85 }, { 150, 125 }, { 160, 190 }, { 100, 150 }, { 40, 190 }, { 50, 125 }, { 0, 85 } }; static gboolean on_draw_event(GtkWidget *widget, cairo_t *cr, gpointer user_data) { do_drawing(cr, widget); return FALSE; } static void do_drawing(cairo_t *cr, GtkWidget *widget) { static gdouble angle = 0; static gdouble scale = 1; static gdouble delta = 0.01; GtkWidget *win = gtk_widget_get_toplevel(widget); gint width, height; gtk_window_get_size(GTK_WINDOW(win), &width, &height); cairo_set_source_rgb(cr, 0, 0.44, 0.7); cairo_set_line_width(cr, 1); cairo_translate(cr, width/2, height/2 ); cairo_rotate(cr, angle); cairo_scale(cr, scale, scale); gint i; for ( i = 0; i < 10; i++ ) { cairo_line_to(cr, points[i][0], points[i][1]); } cairo_close_path(cr); cairo_fill(cr); cairo_stroke(cr); if ( scale < 0.01 ) { delta = -delta; } else if (scale > 0.99) { delta = -delta; } scale += delta; angle += 0.01; } static gboolean time_handler(GtkWidget *widget) { gtk_widget_queue_draw(widget); return TRUE; } int main(int argc, char *argv[]) { GtkWidget *window; GtkWidget *darea; gtk_init(&argc, &argv); window = gtk_window_new(GTK_WINDOW_TOPLEVEL); darea = gtk_drawing_area_new(); gtk_container_add(GTK_CONTAINER (window), darea); g_signal_connect(G_OBJECT(darea), "draw", G_CALLBACK(on_draw_event), NULL); g_signal_connect(window, "destroy", G_CALLBACK(gtk_main_quit), NULL); gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER); gtk_window_set_default_size(GTK_WINDOW(window), 400, 300); gtk_window_set_title(GTK_WINDOW(window), "Star"); g_timeout_add(10, (GSourceFunc) time_handler, (gpointer) window); gtk_widget_show_all(window); gtk_main(); return 0; }
In this example, we create a star object. We will translate it, rotate it, and scale it.
int points[11][2] = { { 0, 85 }, { 75, 75 }, { 100, 10 }, ...
The star object will be constructed from these points.
static gdouble angle = 0; static gdouble scale = 1; static gdouble delta = 0.01;
We initialize three important variables. The angle is used in the rotation, the scale in scaling the star object. The delta variable controls when the star is growing and when it is shrinking.
cairo_translate(cr, width/2, height/2); cairo_rotate(cr, angle); cairo_scale(cr, scale, scale);
We shift the star into the middle of the window. Rotate it and scale it.
gint i; for ( i = 0; i < 10; i++ ) { cairo_line_to(cr, points[i][0], points[i][1]); } cairo_close_path(cr); cairo_fill(cr); cairo_stroke(cr);
Here we draw the star object.
if ( scale < 0.01 ) { delta = -delta; } else if (scale > 0.99) { delta = -delta; }
These lines control the growing or shrinking of the star object.
In this part of the Cairo graphics tutorial, we talked about transformations.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论